Childhood Obesity and Proximity to Urban Parks and Recreational Resources: A Longitudinal Cohort Study

Presented by Jennifer Wolch

Support from the Robert Wood Johnson Foundation and NCI USC TREC gratefully acknowledged

Research Team

- Kiros Berhane, PhD, PI (USC)
- Michael Jerrett, PhD, PI (UCB)
- Rob McConnell, MD, Co-I (USC)
- Frank Gilliland, MD, PhD, Co-I (USC)
- Jennifer Wolch, PhD, Co-I (USC)
- Kim Reynolds, PhD, Co-I (USC)
- John Wilson, PhD, Co-I (USC)
- Chih-Chieh Chang, PhD Student (USC Biostatistics)
- Claudia Lam, PhD Student (USC Biostatistics)
- Julienne Gard, PhD Student (USC Geography)
- Bernardo Beckerman (UCB MSc Public Health, GIS)
- Zev Ross, Consultant (GIS, Land Use Regression)
- Kirby Brady, MPI Student (USC Planning)

Background

- Built environment is increasingly linked to physical activity and obesity
- But few longitudinal studies of built environment determinants of obesity have been conducted with children
- Children's Health Study (CHS) offers longitudinal sample with objectively measured BMI (Kg/m²) data

Data and Methods

- 11,797 CHS children
 - Up to 8 years of follow up
 - Building on \$50+ million prior investment
 - 12 Southern California communities
 - BMI measured yearly by trained staff
- Geospatial data
 - Land use
 - Transportation
 - Business locations
 - Public facilities/programs
 - Green cover
 - Air pollution
- Use of flexible growth curve multilevel modeling

Models Focus on Attained BMI at Age 18

Multilevel Modeling of BMI Trajectories

Level 1: Within subject/between times

Allows for:

- Prediction of attained BMI levels for each subject at any age
- Calculation of 8-yr BMI growth slope for each child
- Adjustment of time-dependent covariates (e.g., health status)
- Non-linear growth trajectory due to puberty

ARL Conference

Level 2: Between subjects/within community

Allows for:

- Within-community built environment effects
- Community average of 8-yr BMI growth
- Adjustment of time-independent covariates (e.g., ethnicity)
- Control of individual-level errors

Level 3: Between communities

Allows for:

- Between-community pollution effect, urban sprawl, crime
- Adjustment of ecologic covariates

ARL Conference

Characteristics of Analytic Cohort Age 10-18

	Prevalence Rate (%) of overweight (BMI ≥ 85 th %ile)						
Cohort (year, # of subjects)	All	Ethnicity					
		Non-Hispanic White	Hispanic	African American	Asian		
(1993: 2192)	25.3	21.6	36.0	20.2	15.9		
(1996: 2081)	27.5	24.0	34.5	31.0	21.6		

Analytic Cohort N = 3318 with 8 years of follow up from ages 10-18

BMI Growth Over 8 Years

ARL Conference

General Characteristics of Study Communities

- Range of community size
 - Long Beach (2000 pop. 406,151)
 - Lake Gregory (2000 pop. 15,431)
- Mix of community types
 - Older central cities (Long Beach, Riverside)
 - Inner ring suburbs (San Dimas)
 - Suburbs (Lancaster, Mira Loma, Upland)
 - Distant exurbs (Lake Elsinore, Alpine)
 - Rural/resort communities (Santa Maria, Atascadero, Lompoc, Lake Gregory)
- Mix of class and race/ethnicity
 - Upland white, affluent
 - Long Beach Latino, lower-income

ARL Conference

ARL Conference

Park & Recreational Program Variables

- Park space within 200, 500, and 1000 m of child's home
- Public recreational programs within 5 km and 10 km of child's home

Recreational Audit

- All municipal websites in CHS study areas were systematically audited for information on recreation program offerings (Su 2006)
- Variables included program type, duration, cost, and target age group
- Location on/off park site also determined using GIS
- Web audit data augmented by direct contacts and ancillary private/nonprofit web sites

Distribution of Recreational Programs Across Study Communities

ARL Conference

Access to Recreation Programs

Model Results

(8-year Growth Curves, Age Centered at 18, with adjustments for ethnicity, town, gender, cohort, and park/recreation specific confounders)

Variable of Interest	Effect: Males (std)	Effect: Females (std)	
Park space (km) within 500 meter buffer	-0.012*** (0.005)	-0.007* (0.005)	
Recreation programs within 5 km buffer	-0.015*** (0.004)	-0.008*** (0.004)	
Recreation programs within 10 km buffer	-0.025*** (0.005)	-0.016*** (0.005)	

	Major Outcomes		
Model Confounders	Parkland within 500 m	Total Number of Recreation Programs within 5 KM	Total Number of Recreation Programs within 10 KM
Traffic Density within 150 m Buffer			
Traffic Density within 300 m Buffer			
Distance from Residence to Nearest Side of Highway			
NDVI within 500 m Buffer	\checkmark		
Buffer Population (Total Population within 500 m Buffer)			
Average Urban Impreviousness within 500 m Buffer			
Average Tree Canopy within 500 m Buffer			
Total Length of Highway within 500 m Buffer			
Total Length of Major Arterial within 500 m Buffer			
Total Length of Airport Runway within 500 m Buffer			\checkmark
Agriculture Land Use within 500 m Buffer			\checkmark
Average Block Size of Blocks within 500 m Buffer			
Number of "X" Intersections within 500 m Buffer			\checkmark
Percent Below Poverty within Census Block			
Percent Unemployment within Census Block			
Town Level Forcible Rape Rate			

Results

- Park space within 500 m of child's home inversely associated with BMI at age 18
- Public recreational programs ≤10 km of child's home also protective for obesity
- Many children have poor access to public recreational programs
 - Almost 20% have no access within 10 km
 - 36% have no access within 5 km

Proximity of Parks & BMI Level at Age 18 (10%-90%ile Scale)

ARL Conference

Proximity of Recreation & BMI Level at Age 18 (10%-90%ile Scale)

ARL Conference

Influence of Confounders

- Confounders for parks lowered effect sizes but relationship between parks and BMI remained significant/negative
- Confounders for recreation increased effect sizes, but differentially by gender (greater for boys)

Interpretation of Findings for Recreational Programs and BMI

- If all children had comparable access to recreational programs:
 - Boys: 11.26% move from overweight to normal; 3% from obese to overweight
 - Girls: 8.5% move from overweight to normal; almost 3% from obese to overweight

ARL Conference

Connections to Active Living Interventions

 Increase park space and recreational programming near poor and minority neighborhoods with high densities of children

Next steps

- Focus on specific roles of gender, race/ethnicity, and age
- Refine selected model measures, for example, park quality/facilities, quality/diversity/cost/energy expenditure associated with recreation offerings
- Analyze children who stay lean in park/recreation-poor places and those who are obese in park/recreation-rich environments, to understand why
- Create a "obesity vulnerability" index to highlight geography of risk for planners, schools, public health officials

