Physical Activity Assessment Using Accelerometers

Richard Troiano, Ph.D. National Cancer Institute

Overview

> Why use accelerometers
> How accelerometers work
> What accelerometers tell us
> Practical matters and logistics
> Data summarization and interpretation
> NHANES experience

Why Consider Accelerometers?

- Activities we are interested in may be routine and occur throughout the day
 - transportation, including short trips
 - walks for pleasure
- This type of behavior is difficult to report frequency/intensity/duration
 - not discrete units, e.g. packs of cigarettes
 - intensity is highly subjective
- Reporting is subject to "desirability" bias
- Qx. have limited reliability/validity
- Diaries have fairly high subject burden

Benefits of Accelerometers

- Remove cognitive aspect of data collection
 - provide objective data
- Primarily measure locomotor activity
- Can monitor multiple days with low burden
- Captures "real-time" intensity, duration, and can derive frequency of bouts
- Non-reactive measurement possible

Accelerometer Caveats

Does not provide context of activity

- Primarily measures locomotor activity
 - not total activity or energy expenditure
 - misses upper body movement with usual placement
 - cannot distinguish load-carrying vs. not

BUT walking/running is a primary source of activity, and may be your focus

How Accelerometers Work

Accelerometer Methods

- Measures body movement in terms of acceleration
 - related to intensity of physical activity
 - measured in 1 to 3 orthogonal planes
 - » anterior-posterior
 - » medial-lateral
 - » vertical

- Data stored for later download/analysis

Acceleration

Proportional to net external force

- reflects energy cost of activity
- Measured by piezoelectric sensors
 - piezoelectric element plus seismic mass
 - measure tension/compression (IC) or bending (beam) upon acceleration
 - generates voltage signal proportional to acceleration

Schematic from Chen and Bassett

More Electronic Factors

- Sampling frequency
 - determines motions that can be detected
 - related to frequency of movement, e.g. arm frequency > leg frequency
- Bandwidth filtering
 - increases linearity of the output relative to movement
 - reduces artifacts (noise)
 - » temperature changes, electronic noise
 - » external factors e.g. vehicular movement
 - if excessive (band is too narrow), reduces valid data collection

Accelerometer Output

Counts

- generated based on sampling frequency
 » range of 1-64 Hz
- usually summed up over epoch period often 1 min, may be user-defined
- NOT comparable across devices
 - » different sensors,
 - » conversion parameters,
 - » amplification

Additional Output Available

- Device dependent
 - Steps
 - Estimated energy expenditure
 » usually calculated by external software
 » generally not accurate at individual level
 Behavior or gait characterization
 » e.g., stroll vs. walk vs. run
 » distance traveled, speed

Data Obtained

- Pattern of counts over time
 - cumulative counts
 - average counts/min
 - time spent within given count criteria
 » sedentary, light, moderate, vigorous, etc.
- Pattern of steps over time (some devices)

Data Example (Actigraph)

SN:14823 Ver 2.2 Start Time 05:00:00 Start Date 04-14-2004 Epoch Period (hh:mm:ss) 00:01:00 Download Time 15:01:36 Download Date 04-21-2004 Current Memory Address: 21362 Battery Life Remaining: 3805 hrs MODE= 1

()2 6 3 3 $\mathbf{0}$

Activity counts

Weekend Steps (total=10,700)

Practical Matters & Logistics

Implementation Issues

Device selection
Monitor number and placement
Distribution and collection
Compliance
Data interpretation

Wearable Accelerometers

Activity + Heart-Rate Monitor

Movement + HR + Posture

5 sensors attached to body parts – chest, each leg, each foot

Selection Factors

Uni-axial vs. tri-axial or omni-directional

- comparable estimates of free-living PA
- slight improvement in some validity estimates with > 1 axis
- output of tri-axial and uni-axial highly correlated

Focus on cost, practicality, reliability, and desired comparability

Monitor Number & Placement

Wrist, ankle, hip, lower back
 – For locomotion, hip or back is preferred
 – close to center of mass

> Multiple monitors?

- capture movement of extremities
- marginal improvement not worth practical costs

Number of Days to Monitor

Trade-off between - cost and compliance (burden) vs. - better estimate of "usual activity" For adults, seven days is best - especially for patterns of inactivity - 3-4 days gives ICC of 0.8 (Matthews, et al., 2002)

For youth, 4-9 days suggested

Distribution & Collection

In-person is best

- relationship increases compliance
- demonstrate fit and wear
- answer questions
- maximize useful data collection days
- Mail-back return
 - prepaid, padded envelopes
 - used in NHANES

- environmental effects - X-ray, cold, etc.

Promoting Compliance

- Daily activity log
 - time on/off, wake/sleep
 - supplemental activity information
- Written instructions with FAQ
- Anticipate barriers to wear fashion, workbelts
- Provide information to employers, coaches, camp counselors, etc.
- Provide incentives contingent upon compliance

Data Interpretation

- Compliance-related decisions
 - determining wear-time
 - "complete" day of wear
 - sufficient number of days
 - impute missing days?
- Choice of outcome measure
 - mean counts per minute
 - compliance with recommendations
 - » cutpoints
 - » bouts?

Cutpoint choice (MTI adult)

Author	Moderate	Vigorous
	(3 MET)	(6 MET)
Freedson et al., 1998	1952	5725
Yngve et al., 2003	2260 treadmill	5896
	2743 track	6403
Hendelman et al., 2000	2191 walk	6893
	191 mixed	7526
Swartz, et al., 2000	574 mixed	4945

Cutpoints

Often based on small samples
 Often limited age ranges

 University students, faculty and staff well characterized

Depend on type of activities included

NHANES Example

NHANES

Nationally representative sample

 Household interview
 Biomedical examination

 Oversamples on age/race/income

 vary by particular survey

 Response rates >70%

NHANES Mobile Exam Center

SAFER • HEALTHIER • PEOPLE™

NHANES

SAFER • HEALTHIER • PEOPLE™

Activity Monitors in NHANES

PA Monitors in NHANES

- > Began in 2003
- > Ages 6 y +
 - Wheelchair-bound/non-ambulatory excluded
- > Ask for 7 d of wear while awake
 - Take off for water activities (swim, bathe)
- Mail back monitor
- Recruitment rate ~93%
 Monitor return rate ~97%

Accelerometer Considerations

- Removes cognitive reporting aspect
- Captures steps and intensity
- Primarily measures locomotor activity
 - Primary source of physical activity
 - No measure of load-bearing
 - Misses upper body and other movements
 - Question of intensity cutoffs for various ages

No information on sources of activity

Not a complete measure of total physical activity or energy expenditure

Acknowledgements

- Objective Monitoring of Physical Activity: Closing Gaps in the Science of Accelerometry
- Kong Chen, Vanderbilt University
 - David Bassett, Jr., University of Tennessee, Knoxville
- Stuart Trost, Kansas State University
 - Kerry McIver, University of South Carolina
 - Russell Pate, University of South Carolina
- Chuck Matthews, Vanderbilt University
 Watch for MSSE Supplement

Thank you – Questions? http://riskfactor.cancer.gov

Risk Factor Monitoring and Methods Branch, Division of Cancer Control and Population Sciences, NCI