Trail Characteristics as Correlates of Urban Trail Use

USC UNIVERSITY OF SOUTHERN CALIFORNIA

Funded by the Robert Wood Johnson Foundation Kim Reynolds Jennifer Wolch Jason Byrne Susan Weaver Chih-ping Chou Bella Feng Donna Spruijt-Metz William Fulton Michael Jerrett

Rationale for Examining Correlates of Trail Use

- Benefits & availability of trails
- Correlates identified in prior studies
 - Distance to trail, barriers (busy streets, hills)
 - Age, education, income and gender of user
- Further research needed on environmental correlates

Elements of the Research

Trail selection

- Trail count
- Trail audit

Characterize built & social environment

Divide trail into ½ mile segments

- Create buffer 1 mile on each side of trail

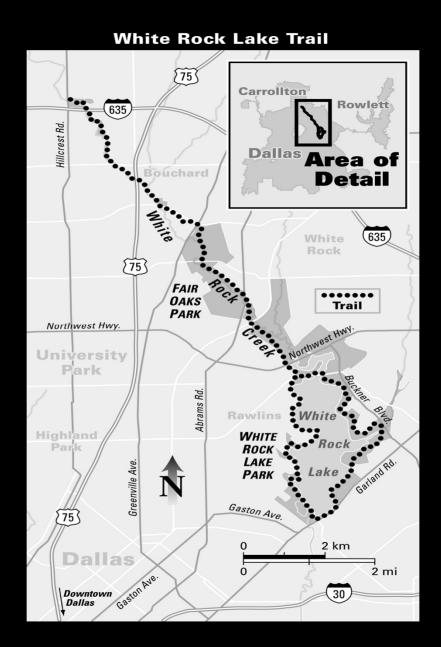
Survey of trailside residents

Trail Selection

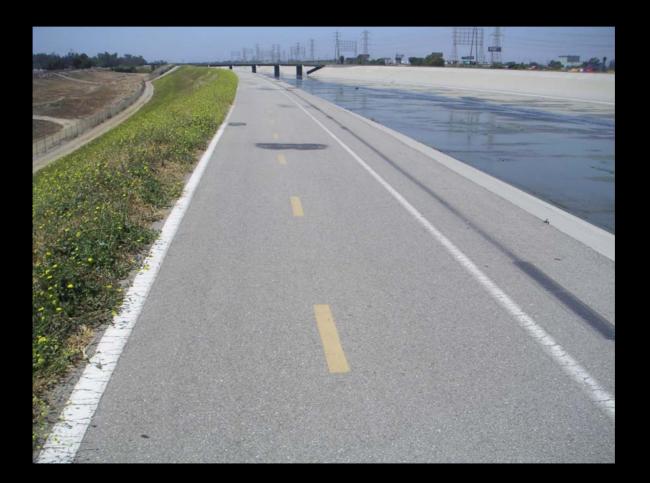
Trail selection criteria

- Trails from different regions
- Continuous, multi-use, >15 miles
- Urban or suburban setting
- Traverse neighborhoods: Hispanic,
 African-American, European-American
- Identified through websites, key informant interviews, literature

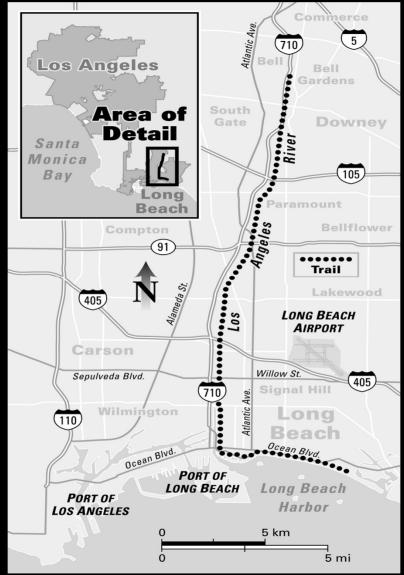
Chicago Lakefront Trail



Chicago Lakefront Trail



Dallas White Rock Lake Trail



Los Angeles River Trail

Los Angeles River Trail

Trail Count Procedures

Observers working in pairs recorded:

- Age (<18, 18-39, 40-64, 65>)

– Gender

- Type of activity (cycling, jogging)
- Two weekdays, two weekend days
- Segment boundaries (every ½ mile) verified by GPS and marked in advance
- Observations in 15 minute intervals
- Inter-rater agreement (A:.67; G:.90; T:.94)

Trail Use

17,738 users counted on all three trails

Users were 67% male

Use varied by age (6% 18 years or less; 56% 18-39; 36% 40-64; 2% 65+)

 Use varied by activity (67% Cyclists; 14% joggers; 13% walkers; 5% skaters; 1% other activities)

57% weekend users and 43% weekday

Trail Audit

- Systematic coding of trail characteristics
- Searched for existing audit instruments (Moudon AJHP 2003;18(1):21-37)
- Adapted Systematic Pedestrian And Cycling Environmental Scan (Pikora AJPM 2002;23(3):187-194)
- Adapted for use on trails
- Two auditors rated each trail

Elements of the Trail Audit

Data Analysis Procedures

- Poisson regression (SAS; GENMOD)
- SPACES variables allocated to categories
 - Aesthetics
 - Continuity & navigation
 - Ease of use
 - Safety
 - Trail & adjacent characteristics, obstacles, services
- Trail use regressed on SPACES variables in univariate and multivariate models
- Variables added to multivariate runs by category and based on strength of univariate association
- Sensitivity analyses with negative binomial model
- No evidence for global autocorrelation or influential cases

Correlates of Trail Use Using Poisson Regression					
Aesthetics, Ease & Attractiveness, Safety					
		Wald	Percent		
Parameter	Estimate	95% CI	Change		
Litter Present	-0.16	-0.24,-0.07	-15		
Trail Noise	-0.51	-0.61,-0.40	-47		
View: Mixed vs Natural	0.34	0.22,0.47	40		
View: Urban vs Natural	0.15	-0.07,0.38	17		
Trail Crowding	0.75	0.63,0.86	111		
Vegetation Density	-0.13	-0.19,-0.07	-12 Medium vs D		
			-23 Light vs D		
			-32 None vs D		
Streetlights Present	0.29	0.20,0.39	34		

Correlates of Trail Use Using Poisson Regression					
Trail & Trail Adjacent Characteristics					
		Wald	Percent		
Parameter	Estimate	95% CI	Change		
Trail Condition	0.23	0.15,0.31	26 Fair vs Excel		
			58 Poor vs Excel		
Drainage Canal as Predominate Built Feature	-0.64	-0.92,-0.36	52		
Natural Features	-0.30	-0.37,-0.23	-74		
Tunnel Present	-0.20	-0.36,-0.03	-18		
Café Present	0.54	0.44,0.64	29		
Count of Trailside Facilities	0.09	0.05,0.13	10		

Discussion

- Built environmental correlates of urban trail use identified in 7 of 8 categories
- Continuity and Navigation not a correlate
- Features that diminish aesthetic appeal may decrease trail use
- Features boosting perception of safety and ability to be seen may increase use
- Trailside services, particularly food service are related to increased use

Future directions

- Explore correlates by type of trail use, gender, age
- Confirm the model (split sample or bootstrap)
- Utilize GIS variables
- Complete multi-level models with individual level data

