Multilevel Modeling

- Different titles for different disciplines
 - Sociology \rightarrow multilevel linear modeling
 - Social Epidemiology → multilevel analysis (modeling)
 - Education \rightarrow hierarchical linear modeling
 - Biometrics → mixed-effects or randomeffects modeling
 - Statistics \rightarrow covariance components
- Appropriate statistical model for
 nested, grouped, or clustered data
 longitudinal data

Multilevel Modeling

- Hierarchical linear modeling =
 - A statistical model that allows specifying and estimating relationships between variables
 - that have been observed at different levels of a nested data structure

- Grouped data
 - Individuals nested within neighborhoods (communities)

Grouped data

 Patients nested within mental/physical health service centers

- Longitudinal data
 - Time periods (or repeated observations) nested within individuals (2-level structure)

3-level nested data structure

repeated observations (level-1) nested within individuals (level-2) nested within communities (level-3)

Problems with Nested Data Structures

Suppose we have an outcome at level-1

e.g., participants' physical activity levels

We want to predict this outcome with

participants' Extraversion (level-1 variable)
community-level cohesion (level-2 variable)

Problems with Nested Data Structures

- Many questions arise
 - How do we do this?
 - What is the proper sample size?
 - What if the effect of Extraversion on physical activity is NOT the same across communities?
- Before I answer these questions let's discuss what traditionally has been done

Traditional Approaches and their Problems

- Disaggregation method
 - analyze individual-level scores ignoring the hierarchical data structure
 - e.g., assigning every individual WITHIN the same community the same group cohesion value
 - run a basic OLS regression (or ANOVA)
 - primary problem
 - participants treated as <u>independent</u> entities
 - violates independence assumption, which \downarrow standard errors
 - participants WITHIN a community are MORE alike

Traditional Approaches and their Problems

- Aggregation method
 - averaging individual-level scores for each level-2 unit
 - e.g., averaging both the physical activity and the Extraversion scores for individuals WITHIN a community to create communitylevel variables ONLY
 - run a basic OLS regression (or ANOVA)
 - primary problem
 - greatly reduces your sample size, and thus power
 - throws away within-in group information

Graphical Representation of a Simple Hierarchical Linear Model

 We want a technique that allows for variables and variation at all levels of the data structure

The logic of HLM

- Continuing with our example
 - let's examine the basic regression equation in a single community
 - $Y' = \beta_0 + \beta_1 X_i + r_i$
 - Physical Activity' = $\beta_0 + \beta_1$ (Extraversion)_i + r_i
 - assume that we have grand-mean centered Extraversion
 - Let's graph this regression equation on the next slide

Regression in a single community

Extending this to 2 Communities

Community 1

- Physical Activity' = $\beta_{01} + \beta_{11}$ (Extraversion)_i + r_i

Community 2

- Physical Activity' = $\beta_{02} + \beta_{12}$ (Extraversion)_i + r_i

- So each community has its own intercept and slope
 this in effect serves as further "data"
 more on this to come
- Let's graph these equations on the next slide

Regression Line in 2 Communities

Multiple Level-2 Units

• What if we consider multiple communities?

- Physical Activity'_{ij} = β_{0j} + β_{1j} (Extraversion)_{ij} + r_{ij}

- intercept and slope are referenced by j, which means each community has their own values
- two important pieces of information when we summarize values across level-2 units
 - mean intercept value and the Physical Activity-Extraversion slope
 - how different each level-2 unit is from these respective means

Terminology: random and fixed • Fixed effects are variable coefficients that are constant across level-2 units - mean intercept and slope across level-2 units • we have statistical tests for these are coefficients that can vary across level-2 units - error terms for level-1 and level-2 equations • we have statistical tests for these

Hierarchical Linear Regression Model

- Each level of the nested data structure is represented by its own submodel
- Assume individuals (level-1) are nested within communities (level-2)
 - level-1 DV = individuals' physical health (Y_{ij})
 - level-1 IV = individuals' Extraversion (X_{ij})
 - level-2 IV = community group cohesion (W_j)
 - Level-1 Equation:

• Physical Activity_{ij} = $\beta_{0j} + \beta_{1j}$ (Extraversion_{ij}) + r_{ij}

- Level-2 Equations:

• intercept $(\beta_{0j}) = \gamma_{00} + \gamma_{01}(Cohesion_j) + u_{0j}$ • slope $(\beta_{1j}) = \gamma_{10} + \gamma_{11}(Cohesion_j) + u_{1j}$

Hierarchical Linear Regression Model

- we can create a single equation representing the regression model by
 - substituting the level-2 equations into the level-1 equation and using a little algebra
 - $PA_{ij}=\gamma_{00} + \gamma_{10}(E_{ij}) + \gamma_{01}(Cohesion_j) + \gamma_{11}X_{ij}Z_j +$ - fixed effects part of the equation
 - PA_{ij} = r_{ij} + u_{0j} + $u_{1j}X_{ij}$ - random effects part of the equation
- Let's break this down using different types of models and the questions that they ask and answer

The intercept-only (unconditional) model

- Primary questions this model answers
 - What is the mean outcome score aggregated across level-2 units?
 - How much variability is there for the outcome at each level of the data structure?
- Equations
 - Level-1 equation: $PA_{ij} = \beta_{0j} + r_{ij}$
 - β_{0i} = mean PA score for each community
 - r_{ij} = difference between each individual's PA and their community's average PA
 we are interested in the variance of this residual term

The intercept-only (unconditional) model

- level-2 equation: $\beta_{0j} = \gamma_{00} + u_{0j}$
 - β_{0j} = PA score for each community
 - γ₀₀ = mean PA score across communities
 referred to as the grand mean
 - u_{0j} = difference between each community's
 PA and the grand mean for PA
 - the variance of this residual term is of primary interest

The intercept-only (unconditional) model

- Intraclass correlation coefficient (ICC or ρ)
 - indicates the amount of variance in the outcome that is a function of level-2 units
 - i.e., what proportion of variance in the outcome is explained by differences in the level-2 units

e.g., ICC = .27 means that 27% of the PA differences are a function of the community that one lives in
 suggests that individuals within

 suggests that individuals within communities are NOT independent

The means-as-outcomes model

- Primary questions this model answers
 - Does the mean outcome score differ as a function of level-2 predictor variables?
 - Do level-2 units still differ with respect to the outcome after accounting for predictor variables already in the model?
- Equations

- Level-1 equation: $PA_{ij} = \beta_{0j} + r_{ij}$

The means-as-outcomes model

- Level-2 equation: $\beta_{0j} = \gamma_{00} + \gamma_{01}(Cohesion_j) + u_{0j}$

- β_{0j} = mean PA score for EACH community
- γ_{00} = mean PA for those in communities that have "average" cohesion
- γ_{01} = association between a community's PA and their community-level cohesion
- variance component
 - the variance of the residual (u_{0j}) is the difference between each community's PA and grand mean PA, after accounting for community cohesion

- indicates whether communities still differ

The random-coefficients regression model

- Primary questions this model answers
 - What is the mean intercept and slope across level-2 units?
 - How much do the intercept and slope differ among level-2 units?
- Equations
 - Level-1 equation: $PA_{ij} = \beta_{0j} + \beta_{1j}(E_{ij}) + r_{ij}$
 - β_{0j} = PA score for individuals who are "average" on Extraversion
 - β_{1j} = association between individual-level
 Extraversion and PA
 - variance r_{ij} = individual PA scores still differ?

The random-coefficients regression model

- Level-2 equations
 - $\beta_{0j} = \gamma_{00} + u_{0j}$
 - γ₀₀ = grand mean PA score controlling for individual level Extraversion
 - variance u_{0j} = community PA scores still differ?
 - $-\beta_{1j} = \gamma_{10} + u_{1j}$
 - γ_{10} = association between Extraversion and PA aggregated across communities
 - variance u_{1j} = association different across communities?

Intercepts- and slopes-as-outcomes model

- 2 primary questions to answer
 - Why some level-2 units have higher/lower outcome scores than others (intercept)?
 - Why some level-2 units have a stronger/weaker level-1 relations than other level-2 units?
- Level-1 equation: $PA_{ij} = \beta_{0j} + \beta_{1j}(E_{ij}) + r_{ij}$

Intercepts- and slopes-as-outcomes model

- Level-2 equations
 - $\beta_{0j} = \gamma_{00} + \gamma_{01}(Cohesion_j) + u_{0j}$
 - γ_{00} = mean community PA for communities who have average cohesion

 assume we have grand-mean centered the cohesion predictor

- γ₀₁ = association between community-level PA and community-level cohesion
- variance u_{0j} = community PA scores still differ?

Intercepts- and slopes-as outcomes model - $\beta_{1i} = \gamma_{10} + \gamma_{11}$ (Cohesion_i) + u_{1i}

- γ₁₀ = association between individual-level Extraversion and PA aggregated across communities
- γ₁₁ = association between individual-level
 Extraversion and PA is predicted by community-level cohesion
 - cross-level interaction
- variance u_{1j} = association different across communities?
- can also evaluate the covariance (correlation)
 between the intercepts and slopes

Practical Issues

- Type of outcome variables
 - multilevel analogs for each
 - binary \rightarrow logistic regression
 - unordered categorical → multinomial logistic regression
 - \cdot ordered categorical \rightarrow ordinal regression
 - counts \rightarrow Poisson regression
- Regression coefficients
 - standardized vs. unstandardized
- Deviance statistic

Practical Issues continued

- Centering predictor variables (see Raudenbush & Bryk [2002], pp. 31-35 & 134-149 for a full explanation)
 - uncentered
 - grand-mean
 - group-mean
- Computer programs for analysis
 - HLM, MLwiN, MPlus, SPSS (Mixed Models), SAS (Proc Mixed), MIXOR, Stata
- Power analysis
 - "30/30" and "50/20" rule

computer programs include RMASS2, Optimal
 Design, PINT, MPlus

Primary Book References

- Heck, R.H., & Thomas, S.L. (2000). An introduction to multilevel modeling techniques. Mahwah, NJ: Erlbaum
- Hox, J.J. (2002). Multilevel analysis. Mahwah, NJ: Erlbaum.
- Kreft, I., & DeLeeuw, J. (1998). Introducing multilevel modeling. Thousand Oaks, CA: Sage
- Raudenbush, S.W., & Bryk, A.S. (2001). *Hierarchical linear* models. 2nd edition. Newbury Park, CA: Sage.
- Singer, J.D., & Willet, J.B. (2003). *Applied longitudinal data analysis*. Oxford, England, Oxford University Press.
- Snijders, T.A.B., & Bosker, R. (1999). Multilevel analysis: An introduction to basic and advanced modeling. London, England: Sage.

Useful Websites and Discussion Lists

- Center for Multilevel Modeling
 http://www.mlwin.com
- UCLA Statistical Computing Center
 - http://statcomp.ats.ucla.edu/mlm/
- Multilevel Modeling Discussion List
 - http://www.jiscmail.ac.uk/lists/multilevel.html