

An Economic Evaluation of Health-Promotive Transportation Infrastructure

By Jessica Guo Sasanka Gandavarapu Civil and Env. Engineering University of Wisconsin

> 2009 Active Living Research Annual Conference

Impacts of Built Environment

Impacts of Built Environment

Goal of Study

Identify and evaluate win-win transportation infrastructure improvement strategies that would promote public health through both reduced driving and increased active transport

- Econometric Analysis Framework of Travel
- ROI Assessment Framework of Infrastructure
 Improvement

Existing Literature

Existing Literature

- Most studies do not needed insight into the trade-offs between motorized and non-motorized travel
- Empirical evidence on the impacts of BE remains very mixed
- Few studies have translated travel and health outcome to economic benefit of transportation investment

TUSALAB

Existing Literature

- Very few scenario analysis tools exist to readily and comprehensively support transportation investment decision making
- Little sensitivity analysis of how benefit estimates vary by modeling methods

- was frequency-based
- Dependent variables:
 - daily vehicle miles traveled (VMT), and
 - miles walked/biked (MWB)

Data for Analysis

- 2001 National Household Travel Survey
- Population Census
- Weather precipitation & temperature (NCDC)
- Land use data
- Employment data
- Bicycle, pedestrian facilities
- Roadway network

Exogenous Variables

- Trip-Maker Characteristics
- Trip Day Characteristics: temperature, snowfall, weekend, weekday trips
- Built Environment Characteristics

Regional level:

retail, recreation, and employment accessibility measures

Neighborhood level:

0.25 and 1 mile network buffers around sampled households. Include:

- Socio-demographic distribution
- Land use mix
- Multimodal transportation facilities

Sample Characteristics

• 50% of 4974 persons in the final sample

	a 1 a/	Average Miles Walked/Biked	Average Vehicle Miles
	Sample %	(MWB) per person	Traveled (VMT) per person
Entire Sample	100	0.512 (1.90)	18.269 (22.24)
Age			
17 to 30 years	16.5	0.761 (2.39)	18.624(22.39)
31 to 45 years	42.1	0.484 (1.95)	17.239 (22.89)
46 to 60 years	27.6	0.499 (1.82)	20.109 (21.05)
Above 60 years	13.8	0.323 (1.03)	17.312 (22.16)
Gender			
Male	42.6	0.564 (1.90)	18.409 (22.18)
Female	57.4	0.473 (1.89)	18.166 (22.28)
Household Income per Annum			
Low (less than \$25K)	9.5	0.685 (1.95)	13.104(19.63)
Medium (>\$25K to \$50K)	25	0.501 (1.72)	17.111 (20.15)
High (>\$50K to \$75K)	23.7	0.501 (1.85)	19.666 (22.23)
Very High (more than \$75K)	35.8	0.512 (2.11)	20.031 (24.69)
Ethnicity			
White	92	0.528 (1.95)	18.761 (22.49)
African American	1.8	0.245 (0.83)	12.733 (19.53)
Asian	2.2	0.633 (1.81)	10.103 (14.72)

Sample Characteristics

Retail Accessibility			• •
Quartile 1	25	0.344 (1.59)	23.838 (25.35)
Quartile 2	25	0.328 (1.31)	19.325 (21.77)
Quartile 3	25	0.426 (1.56)	16.997 (21.80)
Quartile 4	25	0.952 (2.75)	12.864(17.97)
Population Density - 1mi buffer			
Quartile 1	25	0.351 (1.49)	21.754(22.32)
Quartile 2	25	0.375 (1.47)	19.932 (22.36)
Quartile 3	25	0.433 (1.67)	17.390 (23.45)
Quartile 4	25	0.893 (2.67)	13.951 (19.90)
Population Density – ¼ mi buffer			
Quartile 1	25	0.364 (1.48)	22.113 (22.35)
Quartile 2	25	0.443 (1.75)	18.598 (23.64)
Quartile 3	25	0.483 (1.93)	17.093 (19.89)
Quartile 4	25	0.764 (2.34)	15.168 (22.37)
Road length with bike lane - 1 mi			
buffer			
Quartile 1	25	0.408 (1.65)	20.412 (24.52)
Quartile 2	25	0.436 (1.72)	18.106 (22.82)
Quartile 3	25	0.514 (1.76)	17.966 (20.70)
Quartile 4	25	0.696 (2.39)	16.230 (20.19)
Road length with bike lane – ¼ mi buffer			
Quartile 1	25	0.427 (1.66)	19.675 (21.66)
Quartile 2	25	0.411 (1.53)	18.314(21.35)
Quartile 3	25	0.397 (1.57)	19.902 (26.11)
Quartile 4	25	0.800 (2.60)	14.889 (19.17)

Model Structure

• Seemingly Unrelated Regression (SUR) Model

$$y_{1} = X_{1}\beta_{1} + \varepsilon_{1}$$

$$y_{2} = X_{2}\beta_{2} + \varepsilon_{2}$$

$$\Sigma = \begin{bmatrix} \sigma_{ff} & \sigma \\ \sigma & \sigma_{gg} \end{bmatrix}$$
 Intra-person correlation

• Spatial SUR Model

$$y_1 = X_1\beta_1 + \lambda_1W_1\varepsilon_1 + \mu_1$$
$$y_2 = X_2\beta_2 + \lambda_2W_2\varepsilon_2 + \mu_2$$

Intra-person correlation

Inter-person correlation due to spatial dependence

Estimation Results

	SUR MODEL				SPATIAL SUR MODEL			
	MWB		VMT		MWB		VMI	
Explanatory Variables	Coeff.	z-stat	Coeff.	z-stat	Coeff.	z-stat	Coeff.	z-stat
Person/Household/Trip Day Characteristics								
Person is employed	0.1663	2.976***	14.4811	9.583***	0.0610	0.894	16.9346	7.994***
Person is young (17 to 30 years old)	0.2255	2.929***			0.1271	1.36741		
Person is Caucasian	0.2729	2.761***			0.2582	2.172**		
Person holds a driving license			11.6439	12.446***			10.5879	8.136***
Person has a degree (Bachelor's or higher)			2.3258	3.570***			2.0657	2.281**
Number of bicy cles owned by household	0.1480	8.309***			0.1452	6.524***		
Household has no car	0.3548	1.803*			0.0439	0.186		
Family income per year (in \$10,000)			0.2956	2.266**			-0.1229	-0.661
Number of cell phones in household			0.8638	2.806***			1.5234	3.480***
Housing type is either an apartment or a domitory	0.1704	1.985**	2.2296	2.495**	0.1968	1.800*	2.1285	1.578
Lowest temperature on travel day	0.0073	4.805***			0.0066	3.609***		
Travel day is on a weekend			-6.8482	-2.343**			-13.1987	-3.397***

Estimation Results

	SUR MODEL			SPATIAL SUR MODEL				
	MWB		VMT		MWB		VMI	
Explanatory Variables		z-stat	Coeff.	z-stat	Coeff.	z-stat	Coeff.	z-stat
Built Environment Characteristics								
Regional factors								
Ruralsetting			1 3241	1.553			0.9449	0.721
Retail accessibility	0.0399	3.341***	-0.5785	-3.438***	0.0437	2.693***	-0.0145	-0.053
interacted with individual's work status			-1.2072	-5.624***			-1.7220	-5.601**
Neighborhood socio-demographic composition								
% high income households in neighborhood – 1 mile buffer	-0.9233	-3.846***	9.7954	3.561***	-0.8449	-2.767***	15.9405	3.782***
Household density (per acre) – ¼ mile buffer			0.2823	2.833***			0.2084	1.167
Neighborhood land use characteristics								
Land use mix-1 mile buffer	-0.5786	-3.466***	-6.0547	-2.874***	-0.3574	-1.684*	-10.0319	-3.207**
interacted with vehicles per person in household			4.7199	4.334***			4.5087	2.889***
interacted with travel day being on a weekend			8.1199	1.786*			17.1592	2.816***
Neighborhood transportation network characteristics								
Length of roadway with no sidewalk - 1 mile buffer	-0.0483	-3.288***	0 3397	2.128**	-0.0554	-2.784***	0.6447	2.399**
Length of roadway with bike lane – ¼ mile buffer		2.265**			0.1005	0.801		
Number of intersections (per acre) – ¼ mile buffer	0.0503	2.261**			0.0160	0.550	ノ	

Model Goodness-of-Fit

- Spatial autocorrelation is statistically significant
- SSUR has a higher overall r-square (0.1507 vs. 0.1261)

Variance							
	SUR			SSUR			
	MWB	VMT		MWB	VMT		
MWB	2.6744	-2.3153	MWB	2.7389	-2.5286		
VMT	-2.3153	415.7054	VMT	-2.5286	429.8206		
	Cross-equation correlations						
	SUR	SSUR					
	MWB	VMT		MWB	VMT		
MWB	1.0000	-0.0694	MWB	1.0000	-0.0737		
VMT	-0.0694	1.0000	VMT	-0.0737	1.0000		

Construction Cost

- Cost for concrete curbs is approximately \$15
 per linear foot and \$11 per ft² for walkways
- FHWA and ITE recommended minimum width of 5 ft is estimated at \$70 per linear foot
- Total cost estimated at \$450.83M

- Physical Activity Benefit
 - 1mi increase in sidewalk, 0.0483 mi increase in individual's daily distance walked/biked
 - 0.098 additional miles walked/biked, 1.68 minutes of additional physical activity per person per day (3.5 mph speed)
 - additional 10.97 kcal burnt for an averaged (180 lb) person (Warburton et al, 2006)
 - offset weight gain in about 35% of the population (Hill et al, 2003)
 - annual cost estimate of \$560 per person associated with weight gain/obesity (Strum et al, 2002)
 - Given 438,881, total avoided cost is \$86.02M

• Air Quality Benefit

- 1mi increase in sidewalk, 0.6447mi decrease in individual's daily VMT
- VMT reduction of 1.141mi per person-day
- total of 182.80 million miles reduced across the entire population
- Given average unit cost of \$0.045 per vehiclemile for motor vehicle air pollution, total annual air pollution cost saving is \$8.22M

Sensitivity

	SSUR	SUR
Parameter on sidewalk for MWB	0.0554	0.0483
Parameter on sidewalk for VMT	-0.6447	-3.288
BCR	2.04	1.77

Conclusions

- Need to recognize the substitutive, complementary and synergistic effects of BE on travel behavior
- SSUR model is statistically superior to the SUR model, but more difficult to estimate
- Win-win transportation related strategies found: increased regional retail accessibility and increased prevalence of sidewalks within 1 mile neighborhood buffers
- Economic evaluation framework ready for neighborhood/regional application
- Making sidewalks available to all the residents in Dane County yields an estimated BCR of 1.73, suggesting economic viability

Next Steps

- Need a more solid method for estimating the per mile benefit of walking and biking
- Incorporate other societal benefit/cost categories (e.g. safety, land value)
- Integrate with GIS-based planning tools