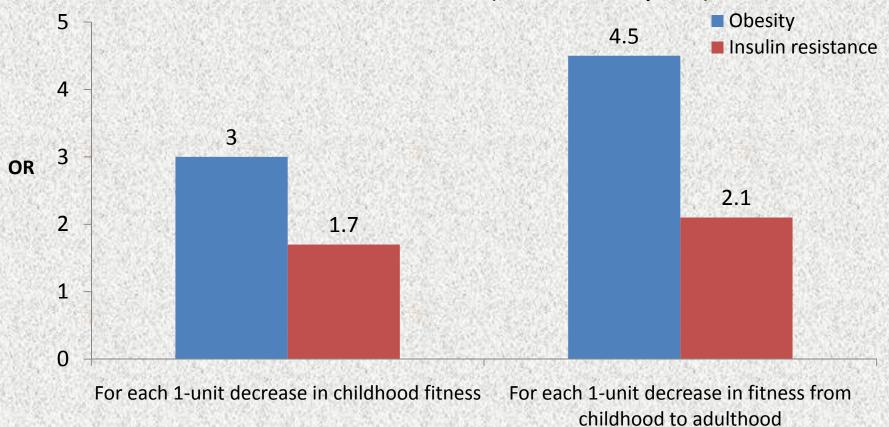
Correlates of Pedometer-Determined Physical Activity among Elementary School Children

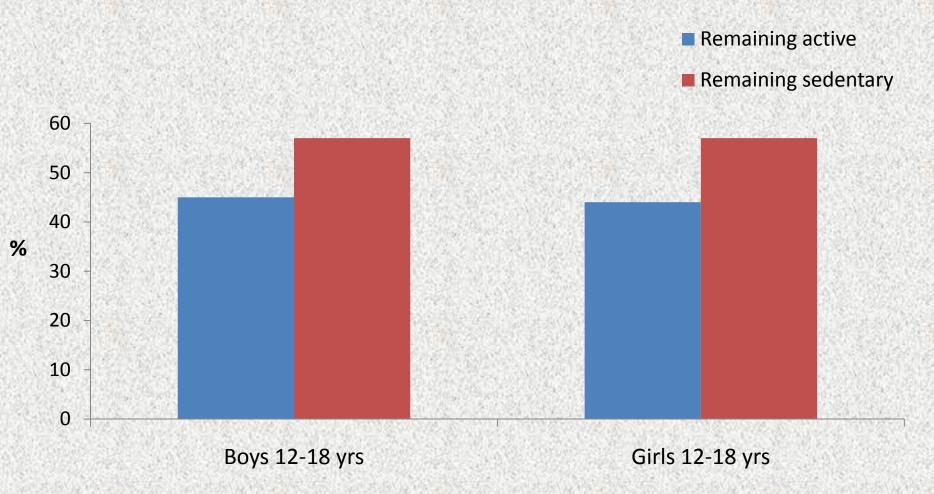

Findings from the **TR**avel, **E**nvironment, and **K**ids (TREK) Study

Gavin McCormack,¹ Billie Giles-Corti,² Anna Timperio,³ Karen Villanueva,² Georgina Wood²

¹Population Health Intervention Research Centre, University of Calgary, Canada; ²Centre for the Built Environment and Health, University of Western Australia, Australia; ³Centre of Physical Activity and Nutrition, Deakin University, Australia

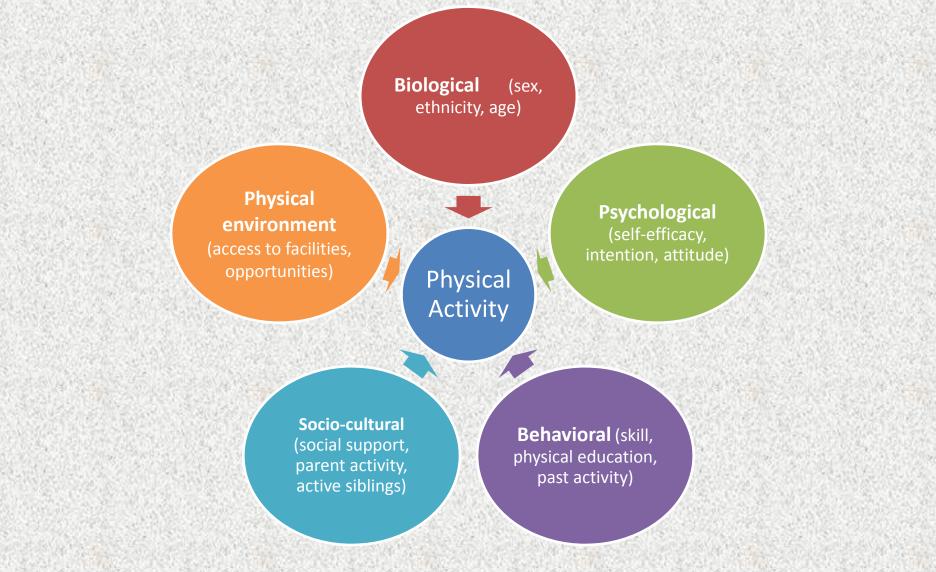
Childhood physical activity and fitness are associated with adult health

Odds ratios representing the likelihood of adulthood obesity and insulin resistance associated with childhood fitness (1985-2005; 7-15 yr olds)*



^{*}Adjusted for demographics, baseline SES and BMI, FUP education, waist circumference

Adapted from Dwyer et al. (2009). Diabetes Care, 32, 683-687


Childhood physical activity tracks into adulthood

% of 12-18yr olds remaining physically activity or sedentary 6yrs later

Adapted from Raitakan et al. (1994). Am J Epidemiol. 140, 195-205

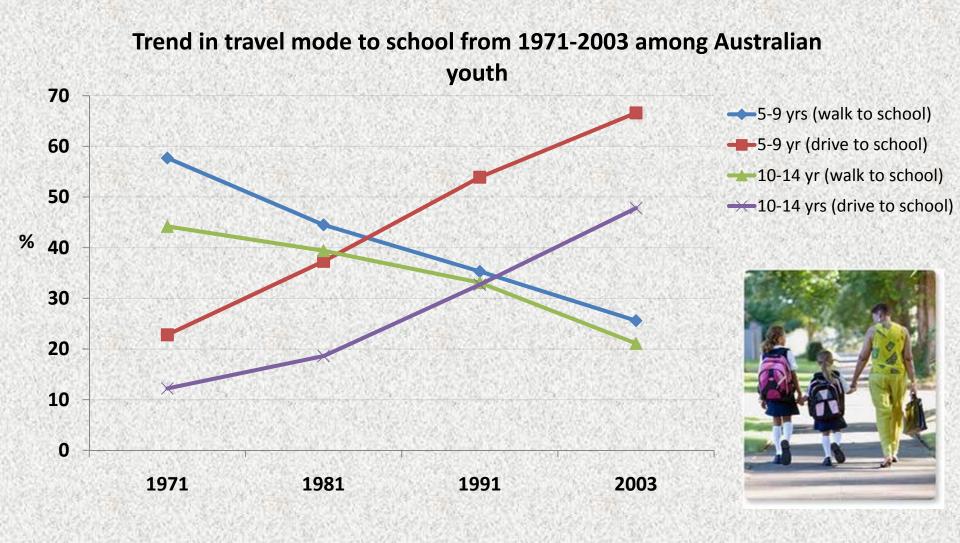
Correlates of physical activity among children and adolescents*

^{*}Sallis et al. (2000). Med Sci Sports Exerc. 32(5), 963-975;

^{*}van der Horst et al. (2007). Med Sci Sports Exerc. 39(8), 1241-50

The TRavel, Environment and Kids (TREK) project

Specific objectives


 To examine the associations between the built environment, socio-demographics, active transport, independent mobility, sedentary and leisure-time activity and 1) daily pedometer-determined steps and 2) achieving established BMI-referenced pedometerdetermined cutpoints.

Overall project aim (TREK)

 To examine the extent to which the urban design of neighborhoods supports or discourages active transportation among grade 5-7 children attending metropolitan government primary schools in Perth, Western Australia.

Initially undertaken to address ...

Active travel and physical activity among youth

Adapted from van der Ploeg et al. (2008). Prev. Med. 46, 60-62

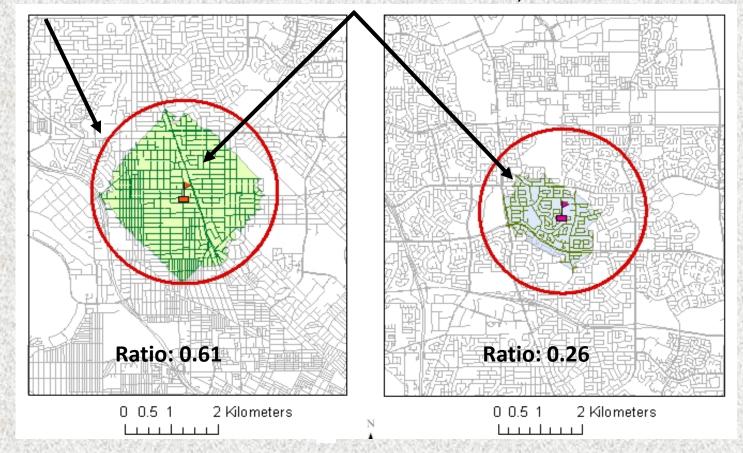
The TRavel, Environment and Kids (TREK) project

Specific objectives

 To examine the associations between the built environment, socio-demographics, active transport, independent mobility, sedentary and leisure-time activity and 1) daily pedometer-determined steps and 2) achieving established BMI-referenced pedometerdetermined cutpoints.

Two stages

- Creation of a school-specific walkability index (objectively-assessed: connectivity + road safety)
- Cross-sectional survey
 (child survey, parent survey, pedometer data collection)



Pedshed (Connectivity)

Step 1
Area (AA) within a 2km
Euclidean distance of school

Step 2
Area within a 2km <u>pedestrian</u>
network distance of school (i.e.,
Walkable Service Area: WSA)

Step 3
School pedshed
calculated: WSA/AA

Road Volume Exposure (Traffic Safety)

Road Type ¹	# Vehicles/day
Primary Distributor (P)	> 15,000
District Distributor A (DA)	> 8,000
District Distributor B (DB)	> 6,000
Local Distributor (L)	6,000 max
Access Road (AR)	3,000 max

- Length of each road type (x 5) within 2km of each school
- Length of higher volume roads summed and divided by AR (i.e., P + DA + DB + L / AR)
- A high ratio of high volume : low volume roads = low walkability

Sampling: Schools and participants

- Pedsheds and Road Volume Exposure deciled and summed (walkability index: 2-20)
- School SES index tertiled (low, medium, and high)
- Schools ranked on walkability within SES tertile
- 4 top and 4 lowest ranked schools within each SES tertile recruited
- N=25 schools (RR=69.4%) with 1 class per grade per school randomly selected (>=30 children per grade or >=90 children per school)
- N=1480 children (RR=56.6%) completed surveys (July-December 2007)
 - N=1291 completed pedometer data collection
 - N=1314 parents completed a self-administered survey

Correlates from the child and parent surveys

- **Socio-demographics**: child's sex, grade, dog ownership, parent education, marital status, # dependents <18 yrs, home ownership
- **Sedentary behavior**: screen time/day (TV/computer/video games)
- Active leisure-time behavior: # of activities in last week: playing in park/playground/field; team sports; clubs/youth group; walking; playing in street; playing in yard, dog walking
- Independent mobility: play in neighborhood/park/street unsupervised
- Active transport: travel to and from school by motor vehicle
- Self-reported built environment: # diff. destinations w/in 10min walk of home, relative or friends house w/in 10min walk of home, neighborhood friendliness, traffic-related barriers, necessary to drive to a park with appealing equipment

Other objectively-assessed correlates:

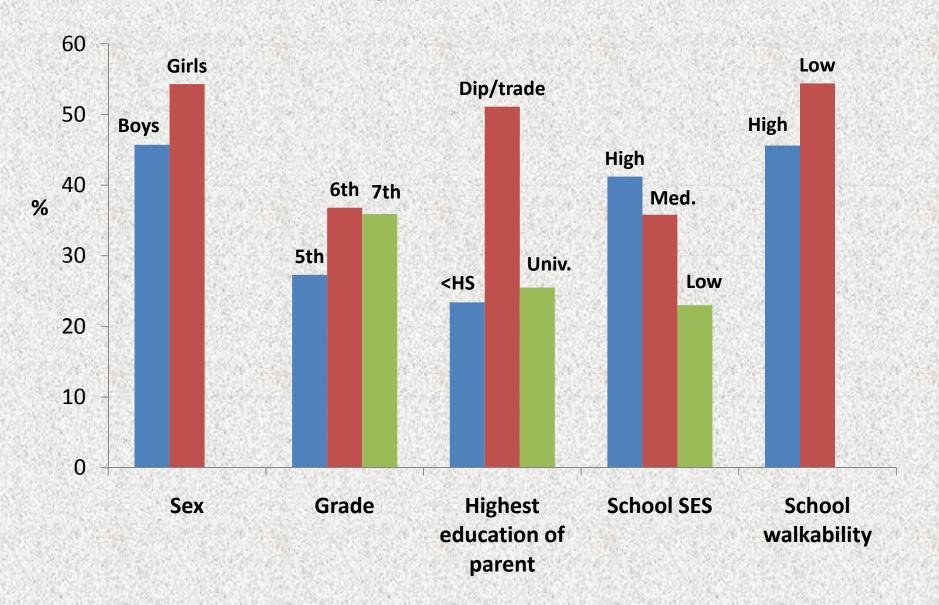
• School-level social and built environment variables: # children in grade, average steps/day in same grade at same school, school SES, school-specific walkability index

Pedometer data

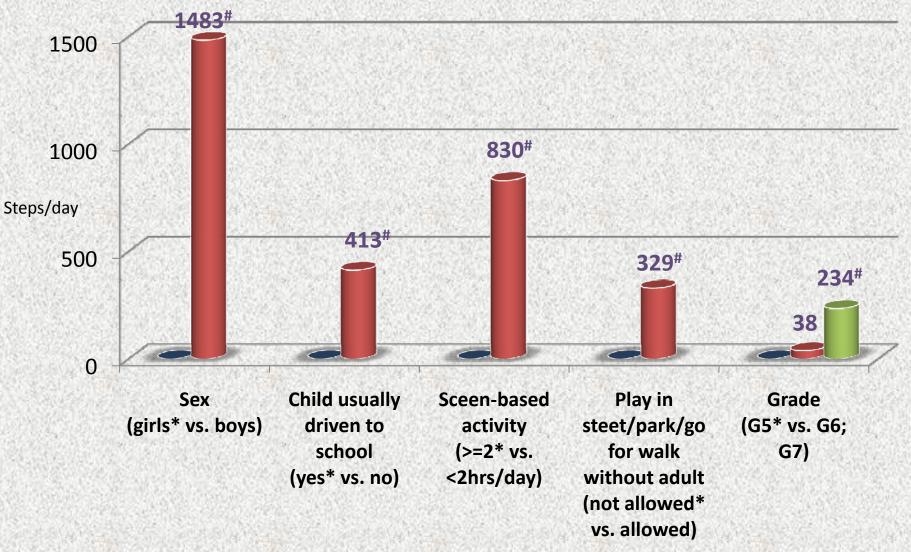
- Accusplit (AH120 M8) pedometers with built-in memory
- 7 days of data collection
- Valid counts: 1000-30000 steps/day; ≥4 days of pedometer data (day-to-day ICC=.65)

Outcomes

- 1) Average pedometer steps/day
- 2) Achieving ≥15000 steps/day for boys and ≥12000 steps/day for girls*


Analytical sample: n=927

(including complete child survey, parent survey, pedometer data)



^{*}Tudor-Locke et al. (2004). Prev. Med. 38, 857-864

Primary demographic characteristics (n=927)

Correlates of pedometer-determined steps per day

Adjusted for all correlates and school clustering

* Reference category. #p<.05.

Mean: 11407±3136 steps/day

Correlates of pedometer steps per day

In addition...

• Steps per day were positively associated with the # weekly leisure-time activities $(\beta=151 \text{ steps/day}, p<.05)$

• An idividual's steps per day were positively associated with the mean steps among students within same grade at the same school (β =432 step/day increase, p<.05; based on 500 steps/day increment)

Correlates of the pedometer cutpoints

(boys:≥15000 and girls: ≥12000 steps/day)

Adjusted for all correlates and school clustering

^{*} Reference category. #p<.05.

Correlates of BMI-referenced pedometer cutpoints

(boys:≥15000 and girls: ≥12000 steps/day)

In addition...

- Achieving the pedometer cutpoint was positively associated with average steps among students within same grade and school (OR=1.29, p<.05; 500 step/day increment)
- Achieving the pedometer cutpoint was associated with the # students in the same grade at the same school (OR=1.03, p<.05; 5 student increment)

Conclusions

- Pedometer-determined physical activity was associated with:
 - child's behavior (i.e., AT, screen activity, leisure activity, independent mobility)
 - peer physical activity
 - neighborhood characteristics (i.e., school SES, proximity of a friend's house, destination mix)
- Sex, age, outside play, attending sports clubs, SES, active transport associated pedometer steps (Locucaides et al. 2006; Duncan et al. 2008; Hohepa et al. 2008; Le Masurier et al. 2005)

 Comprehensive multi-level interventions that reduce screen-time, encourage active travel to/from school, foster a physically active classroom culture and that make neighborhoods safer might encourage more physical activity among children

Acknowledgements

Investigators

- Prof Billie Giles-Corti
- Dr Kimberley Van Niel
- Dr Anna Timperio
- Dr Max Bulsara
- Dr Terri Pikora
- Dr Gavin McCormack

Research staff & students

- Ms Gina Wood (Project Coordinator (now PhD candidate))
- Mr Vince Learnihan (GIS Research Assistant)
- Mrs Bridget Beesley (GIS Research Assistant)
- Ms Claire Ruxton (Research Assistant)
- Ms Karen Villanueva (PhD candidate)
- Miss Rosie Murray (Statistics Assistant)

Collaborators & industry partners

Study funder

Salary support

Forthcoming TREK publications:

Giles-Corti et al. (in press). School Site and potential to walk to school: The impact of street connectivity and traffic exposure in school neighborhoods. Health and Place

McCormack et al. (in press). A cross-sectional study of the individual, social, and built environmental correlates of pedometer-determined physical activity among elementary school children. Int J Behav Nutr Phys Act