Relationships of Urban Containment Policies to Physical Activity: A Longitudinal Analysis of Large U.S. Metropolitan Areas

Semra Aytur¹, Daniel Rodriguez², Kelly Evenson¹, Diane Catellier ³

¹Department of Epidemiology, ²Department of City and Regional Planning, ³Department of Biostatistics

The University of North Carolina, Chapel Hill

In the News...

Smart Growth Makes a Statement with Governors

State governments can either enable or stymie communities that want to plan and invest for a more livable future...

Smart Growth Planning Part of Gov. Spitzer's Goal for Cleaner, Greener New York

Transportation investments must be accompanied by smart-growth planning, which will alleviate environmental degradation, and will make our communities more vibrant places to live

Smart, Quality Growth – Preparing for Florida's Future

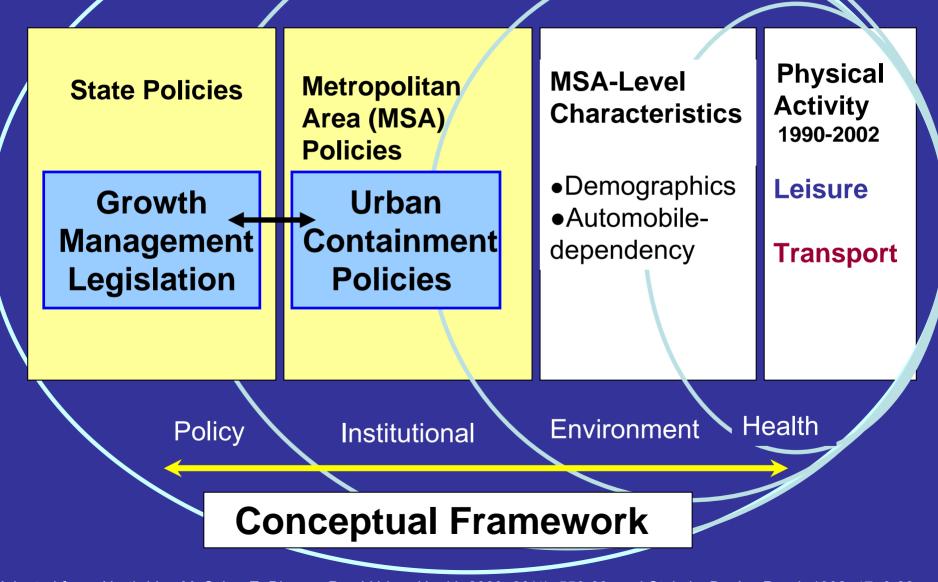
Smart Growth at the Ballot Box

Governors in at least 13 states were elected or re-elected on platforms with strong calls for moves such as focusing investment on existing cities, towns and suburbs; expanding affordable housing options near job centers; balanced transportation investments

Urban Containment Policies

- Adopted at the state, metropolitan, county, or municipal levels
- Intended to manage the location, character, and timing of urban growth
 - Goals:
 - Compact development
 - Preservation of open space
 - Efficient use of infrastructure
 - Promotion of social equity
 - Implementation tools:
 - Urban growth boundaries
 - Infrastructure service areas/adequate public facilities ordinances
 - Greenbelts

Background: Previous Studies


- Features of the built environment associated with physical activity
 - Access to parks, open space, recreational facilities
 - Mixed residential and commercial land uses
 - Higher densities
 - Connected multi-modal transportation systems
- Limited research examining the role of macrolevel policies that may facilitate development patterns supportive of these attributes

Limitations in Existing Literature

- Few longitudinal studies
- Public health surveillance systems focus on leisure-time physical activity
- Relationships of containment policies to physical activity remain unexplored

- Examine relationships between urban containment policies, state adoption of growth management legislation, and physical activity
 - 1990-2002
 - 63 large U.S. metropolitan statistical areas (MSAs)

Adapted from: Northridge M, Sclar, E, Biswas, P. J Urban Health 2003; 80(4): 556-68; and Stokols, D. Am Psych 1992; 47: 6-22

Data Sources

Policies Planning Advisory Service Report #520	i or oupitu	Net Density	MSA Socio- demographics	Physical Activity
 Nelson & Dawkins, 2004 Published Studies (e.g., Wassmer 2006; Rodriguez 2006; Gale 1992; Weitz 1999, Burby & May 1997; Carruthers 2002) 	Texas Transportation Institute Urban Mobility Report	Natural Resources Inventory 1990 - 2002	U.S. Census Percent Black Percent ≥ High School Education Percent ≥ Age 65 Household Income Population Size 	• <u>Leisure:</u> Behavioral Risk Factor Surveillance System (BRFSS) • <u>Walking &</u> <u>Bicycling to</u> <u>Work:</u> U.S. Census

Policy Measures

- Urban Containment Policies (UCP)
 - Presence of a formally adopted urban growth boundary, urban service limit, or greenbelt in one or more jurisdictions within the MSA

Urban Containment Policy Classification

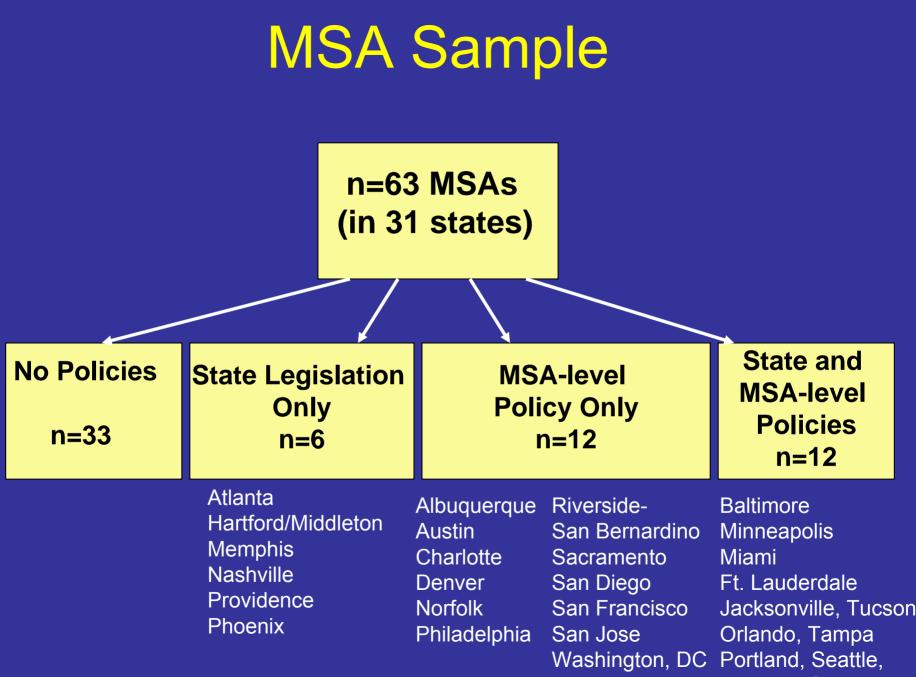
Source: Nelson and Dawkins (2004)

Strong

- Incorporate a variety of implementation tools to direct growth toward designated urban areas
 - Rural land policies to prevent low density sprawl
 - Strong housing affordability, infrastructure, and open space policies
 - Strong intergovernmental coordination

Weak

- Lack policies to contain the outward spread of development
- Weak intergovernmental coordination

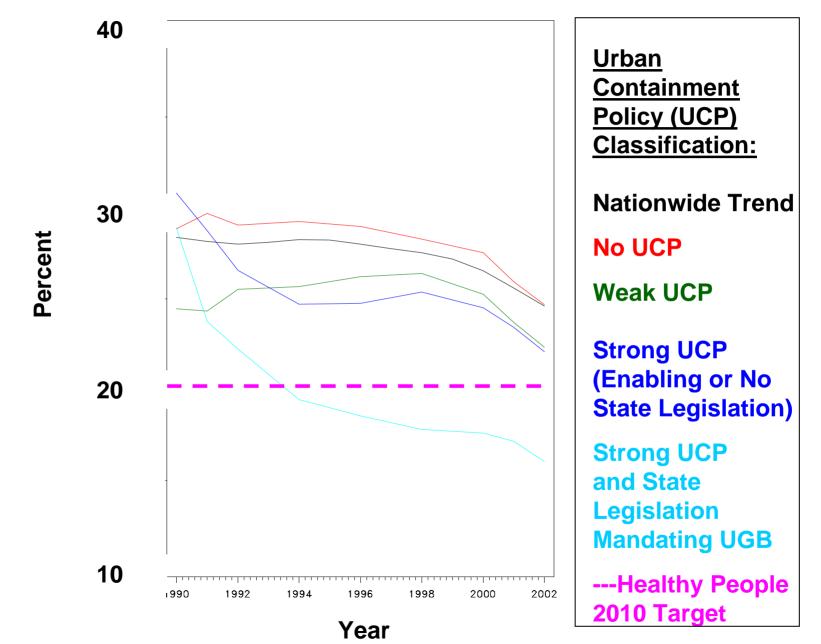

State Growth Management Legislation

n=10 states

Oregon, RI, Florida, Georgia, Maryland, Washington, Minnesota, Connecticut, Tennessee, Arizona

- 2 Approaches:
 - Enabling Legislation

 Legislation <u>mandating</u> adoption of Urban Growth Boundaries (UGBs)


Tacoma, Spokane

Statistical Analysis

- Linear mixed models
 - Repeated measurements (level 1) nested within MSA (level 2)
 - Random intercepts; random slopes
 - Covariates
 - Time-varying and baseline (1990)
- Estimated the pattern of change from 1990-2002 in the proportion of the population in each MSA who reported being physically active, given the presence or absence of policies

Percent No Leisure-Time Physical Activity, 1990-2002

*Unadjusted for SES

Proportion No Leisure-Time Physical Activity, 1990-2002

Model 1 Adjusted Estimate	Model 2 Adjusted Estimate
25.35****	25.74****
0.94****	0.98****
-0.07****	-0.08****
1.13	2.03***
-3.28**	-1.81
-	-1.80*
-	-2.40***
75%	78%
	Adjusted Estimate 25.35**** 0.94**** -0.07**** 1.13 -3.28** -

****p≤0.001; ***p≤0.01; **p≤0.05; *p≤0.10

Adjusted for median household income, percent \geq high school, percent black in 1990, percent \geq Age 65 in 1990

Mean Minutes Leisure Physical Activity Per Week, 1990-2000

Variable	Model 1 Estimate (Adjusted)	Model 2 Estimate (Adjusted)
Intercept (Mean Minutes Leisure PA/week 1990)	178.20****	175.86****
Year	0.92	0.76
State Legislation (Referent=None)		
Enabling	-4.26	-12.47
Mandate UGB	53.45***	41.16**
MSA Containment Policy (Referent=None)	_	
Weak	_	18.36*
Strong	_	21.09**
Daily VMT per Capita (slope)	-4.50**	-4.21**
% Between-MSA Variance Explained	61%	69%

****p≤0.001; ***p≤0.01; **p≤0.05; *p≤0.10

Adjusted for median household income, percent \geq high school, percent black in 1990, percent \geq Age 65 in 1990, daily VMT per capital in 1990

Percent Walking or Bicycling to Work, 1990-2000

Variable	Model 1 Adjusted Estimate	Model 2 Adjusted Estimate
Intercept (Percent Walk/Bike to Work, 1990)	3.21****	3.18****
Year	-0.09****	-0.09****
State Legislation (Referent=None)		
Enabling	-0.10****	-0.09****
Mandate UGB	0.65	0.60
MSA Urban Containment Policy (Referent=None)		
Weak	_	0.06
Strong	_	0.09***
Daily VMT per capita in 1990	-0.14****	-0.14***
Density	0.39****	0.40****
% Between-MSA Variance Explained	60%	60%

Adjusted for median household income, percent \geq high school, percent black in 1990, percent \geq Age 65 in 1990

Limitations

- Self-report of physical activity

 Lack of detailed transportation-PA data
- Lack of cohort data
- Potential misclassification of policies
- Time lag between policy adoption and implementation
 - Mechanism not determined

Strengths

- Longitudinal design
- Combination of data sources
- Large sample of diverse metropolitan areas
- Measurement of both state and MSA policies

Conclusions

- Metropolitan areas with strong urban containment policies have maintained higher population levels of leisure-time physical activity and active commuting from 1990-2002
 - Role of state, MSA, and local policies
 - Future studies:
 - Explore policy processes
 - Examine health and equity implications in diverse communities

Acknowledgements

We gratefully acknowledge The Robert Wood Johnson Foundation's Active Living Research program for supporting this research.

The first author is also supported by NIH, NHLBI, Public Health Service Training Grant

aytur@email.unc.edu