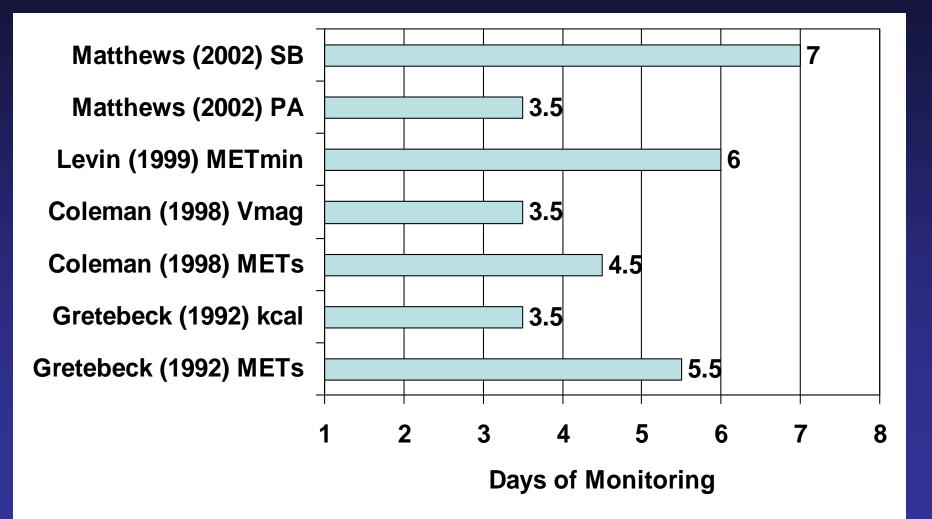
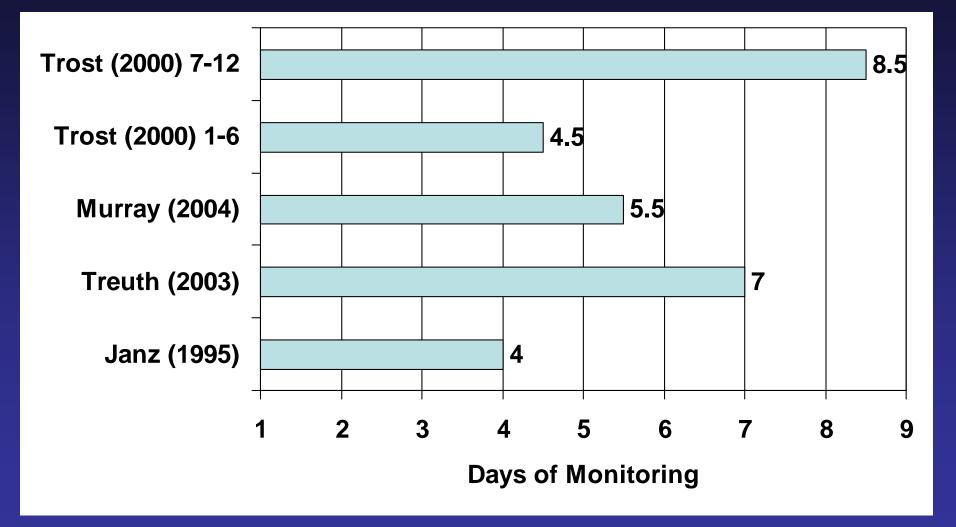
Best Practices in the Data Reduction and Analysis of Accelerometers and GPS Data


Stewart G. Trost, PhD Department of Nutrition and Exercise Sciences Oregon State University

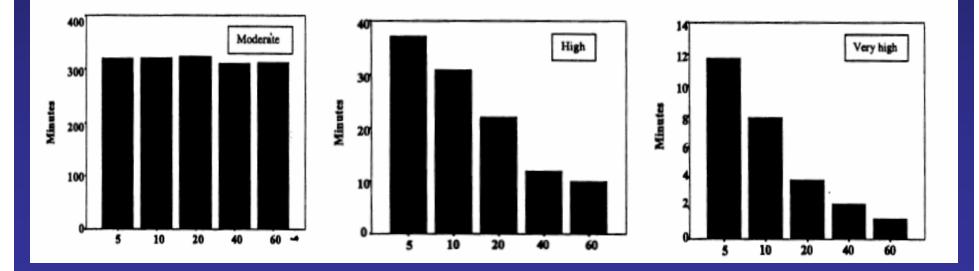
Key Planning Issues

- Number of Days of Monitoring
- Epoch Length
- Monitor Distribution and Collection
- Promoting Compliance



Days of Monitoring – Adult Studies

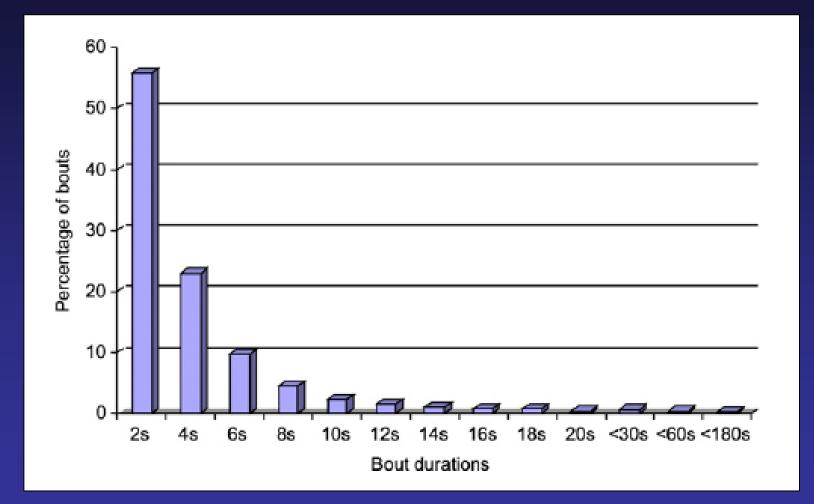
Trost, McIver, Pate. Med Sci Sports Exerc 2005:37(11, Suppl):S531-S543


Days of Monitoring – Youth Studies

Trost, McIver, Pate. Med Sci Sports Exerc 2005:37(11, Suppl):S531-S543

- Cut-points based on 1-min epochs could significantly underestimate children's highly sporadic and intermittent activity patterns.
- Over the 1-min period, bursts of vigorous activity and brief periods of inactivity are averaged
- Vigorous activity becomes "masked"
- Unexplored issue in the adult population

- 16 children (mean age 7.5 ± 0.3 y)
- Wore monitor on right hip and lower back
- 4 monitoring days, 5-second epoch
- Mins of PA estimated via Freedson adult cut-points



Nilsson, Ekelund, Yngve, & Sjostrom (2002) Pediatric Exercise Science, 14, 87-96

- Baquet et al. (2007)
- 26 children (mean age 9.95 ± 0.99 y)
- Epoch set for 2-seconds
- Minutes of PA estimated via Freedson adult cut-points
 LPA 70.8 ± 13.2 seconds
 MPA 9.0 ± 2.8 seconds
 VPA 4.7 ± 1.2 seconds

80% of MPA bouts, 93% of VPA bouts lasted < 10 seconds</p>

Baquet, Stratton, Van Praagh, Berthoin *Preventive Medicine* 2007;44:143-147

Baquet, Stratton, Van Praagh, Berthoin *Preventive Medicine* 2007;44:143-147

Epoch and Cut-Points

TABLE 2. Descriptive statistics, root mean squared error (RMSE), and significant of differences between direct observation (DO) and AG accelerometer derivations of MVPA by epoch.

Intensity Derivation	Mean MVPA (s)	Median MVPA (25th, 75th percentile) (s)	MVPA Range (s)	RMSE (s)	Significance (DO vs AG Epoch)		
DO	522 ± 48	521 (487, 559)	420-632	NA	NA		
Treuth					F = 103, P < 0.001		
T_5	318 ± 87	310 (265, 370)	100-470	218	P < 0.001*		
T_10	309 ± 87	310 (250, 370)	30-490	231	P < 0.001*		
T_15	289 ± 99	285 (225, 345)	30-465	249	P < 0.001*		
T_20	277 ± 107	260 (220, 320)	20-500	263	P < 0.001*		
T_30	242 ± 97	240 (80, 300)	0-450	293	P < 0.001*		
T_60	246 ± 146	240 (120, 360)	0-540	310	P < 0.001*		
Mattocks (4 MET)					F = 174, P < 0.001		
M_5	248 ± 80	250 (205, 295)	40-400	284	P < 0.001*		
M_10	230 ± 92	220 (180, 300)	20-420	304	P < 0.001*		
M_15	214 ± 97	210 (135, 270)	0-405	320	P < 0.001*		
M_20	207 ± 104	200 (140, 260)	0-440	328	P < 0.001*		
M_30	183 ± 85	180 (120, 240)	0-360	350	P < 0.001*		
M_60	137 ± 121	120 (16, 180)	0-420	405	P < 0.001*		
Freedson (4 MET)					F = 1.3, P = 0.275		
F_5	488 ± 91	490 (445, 545)	260-655	91	NA		
F_10	506 ± 101	510 (460, 570)	260-680	93	NA		
F_15	504 ± 113	510 (450, 570)	195-675	108	NA		
F_20	506 ± 117	520 (460, 580)	180-700	112	NA		
F_30	495 ± 129	480 (450, 570)	150-750	122	NA		
F_60	525 ± 179	540 (420, 720)	60-780	161	NA		

MVPA, moderate-to-vigorous physical activity. T_, M_, and F_ 5, 10, 15, 20, 30, and 60 correspond to specific epoch lengths (in seconds) for Treuth et al. (26), Mattocks et al. (10), and Freedson et al. (6) children's activity count cutpoints:

* Significantly different based on alpha of 0.008 (i.e., Bonferroni alpha correction for multiple comparisons).

McClain et al. Med Sci Sports Exerc 2008;40:2080-2087

Distribution & Collection

- Face to face at home, school or other community setting – collection the same.
- Mail to subject and return via mail.
- Combination of distributing face-to-face by returning via mail.
- Postage or shipping option viable.
- Compensation contingent upon the safe return of monitor.
- This has not been systematically studied

Promoting Compliance

- Multiple single day monitoring
- Frequent contacts during the monitoring period
- Written materials/ flyers
- Logs promotes self-monitoring
- Apply "relapse prevention model"
- Giving them options for wearing under clothes
- Educate teachers, coaches, referees, and other sport officials
- Show participants graphical display of data
- Providing incentives contingent on compliance money, gift certificates, coupons, extra credit.

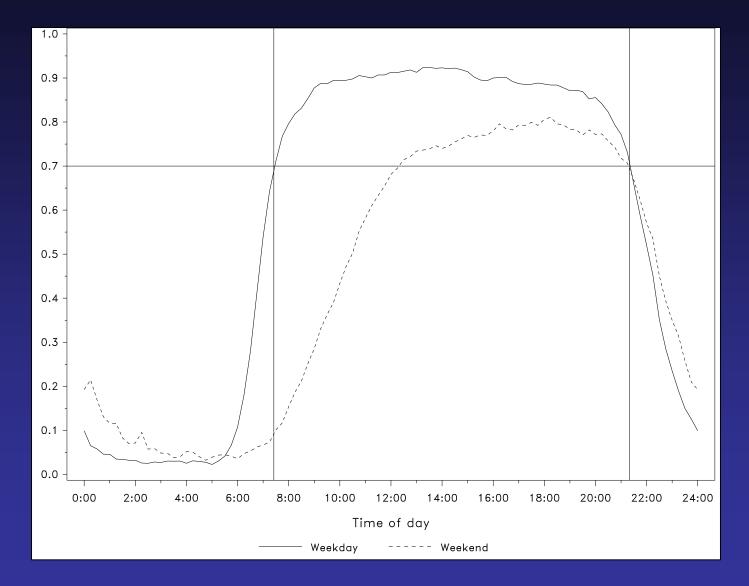
Key Data Reduction Issues

- Minimal wear requirements / a valid day
- Identifying spurious data
- Computing summary variables
 - Calibration of accelerometer output
- Extracting bouts
- Imputing data

What is a complete day ?

- Zero Count method
 - Counting strings of consecutive 0 counts
 - 60-minutes
 - 20-minutes
 - 10-minutes

Compared to criterion for "registered counts"


- 720 840 1-min epochs
- 12 -14 hours per day of wearing time
- "Bouts" of zero strings > 3 bouts indicate non-wearing

Cut-off for "complete" day

• 70/80 rule

- Find 70th percentile of on and off times
- Define adherence as 80% of the difference in on/off times.
- Weekdays
 - on: 7:15 AM; off: 9:15 PM (14 hrs)
 - Adherence 11.2 hours
- Weekends
 - on: 12:15 PM; off: 9:15 PM (9 hrs)
 - Adherence 7.2 hours

What is a complete monitoring day ?

Sample Data Approach used in the TAAG intervention study

Identifying Spurious Data

- Variety of criteria have been used
- ≥ 16,000 20,000 counts
- Percentile Approach
- # of SD's
- Should also screen for negative counts strings of identical counts
- Possible with ActiGraph software

Computing Summary Variables

- Usually calculated for each monitoring day
- Total Counts
- Average counts per minute?
- Time spent in sedentary, light, moderate, and vigorous physical activity
- Meeting guidelines
- Based on the average or aggregate?
- # of valid days makes a big difference

Calibration of Activity Monitors

- Numerous equations exist!!!
- Early studies were treadmill-based.
- More recent studies use "free living" nonambulatory activities plus locomotor activity.
- Predictive validity in field settings remains a question.
- NB: None appear to be valid for individual level prediction of PAEE.

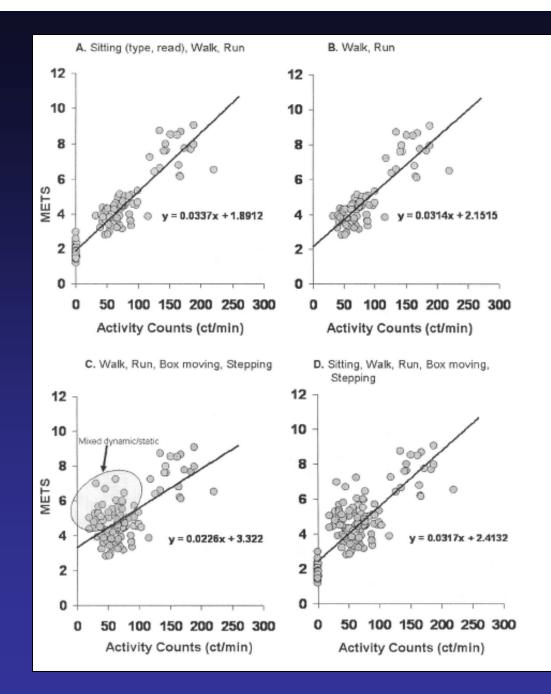
Lots of Equations!

TABLE 1. Description of existing ActiGraph prediction equations and cut points.

	Source Activities			Prediction Equation				Cut Points				
Reference	Sit Rest	Walk	Run	Mixed Dynamic- Static	Units	Intercept	Slope	R ²	SEE	Inactive/ Light	Moderate	Vigorous
Freedson (11) N = 50; men/women (avg ~24 yr)		2	1		METs	1.439	0.000795	0.82	1.12	0–1951	1952	5725
Nichols (28) N = 30; men/women (18-35 yr)		2	1		METsª	1.731	0.0007271	0.89	1.06	0–1576⁵	3285 [¢]	5677 [¢]
Yngve (42) N = 28; men/women (avg ~23 yr) (see equation code below) ^c		2	1		METs METs	0.751 1.136	0.0008198 0.0008249	0.86 0.85	1.10 1.14	0–2742 0–2259	2743 2260	6403 5896
Prago (7)		2	2		METs METs METs ^{a,d}	1.004 1.762 2.886	0.0007587 0.0007371 0.0007429	0.89 0.86 0.89	0.96 1.09 0.91	0–2630 0–1679 0–1809	2631 1680 1810	6585 5750 5850
Brage (7) N = 12; men (23–30 yr)			2				-0.02 (V0 ₂)					
Hendelman (14) N = 25; men/women (30–50 yr)		4 4		6	METs METs	1.602 2.922	0.000638 0.000409	0.59 0.35	0.87 0.96	0–2190 0–190	2191 191	6893 7526
Swartz (34) N ~10/activity; men/ women (19–74 yr)		4		24	METs	2.606	0.0006863	0.32	1.16	0–573	574	4945
Leenders (18) N = 28, men/women (avg ~24 yr)		5			METs	2.240	0.0006	0.74	0.53	0–1266	1267	6252

NHANES Cutpoints for Adults

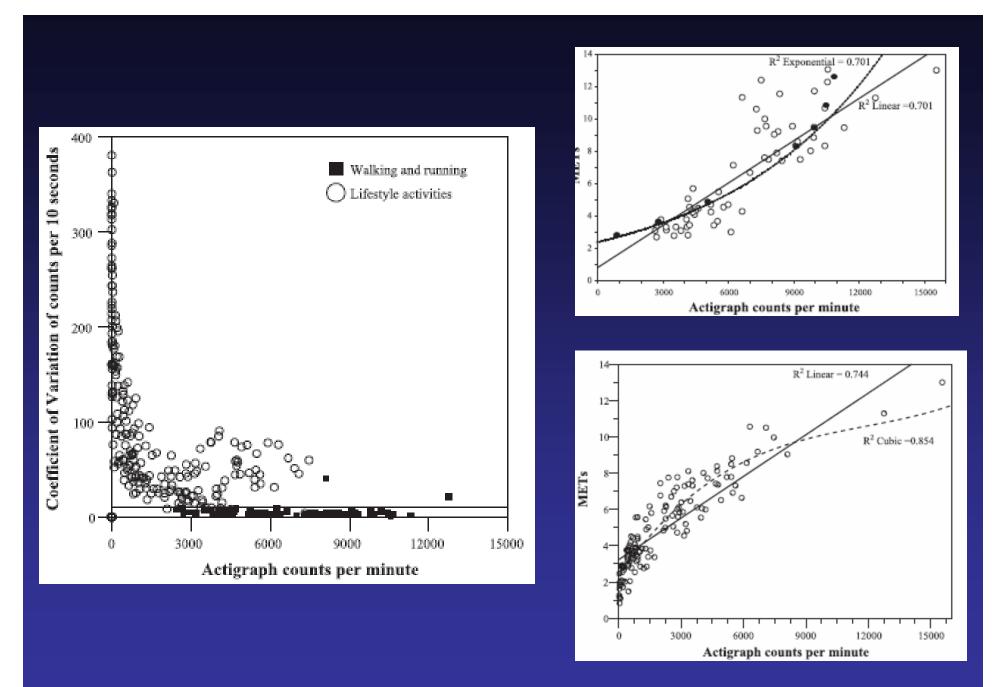
Author		Moderate	n	Vi	gorous	n	
Freedson	Treadmill	1952	50	668.49	5725	50	1960.62
Yngve	Track	2743	28	526.05	6403	28	1227.97
	Treadmill	2260	28	433.43	5896	28	1130.74
Brage	Treadmill	1810	12	148.77	5850	12	480.82
Leenders	Treadmill	1267	28	242.99	6251	28	1198.82
				<u>2019.7</u>			<u>5999.0</u>

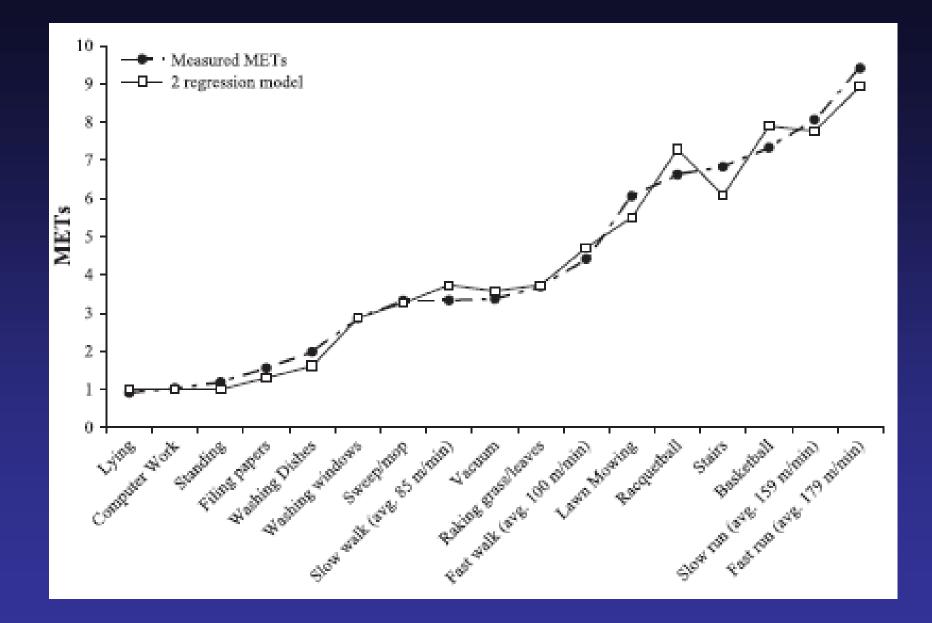

Note heterogeneity among studies in cut-points, especially for moderate activities.

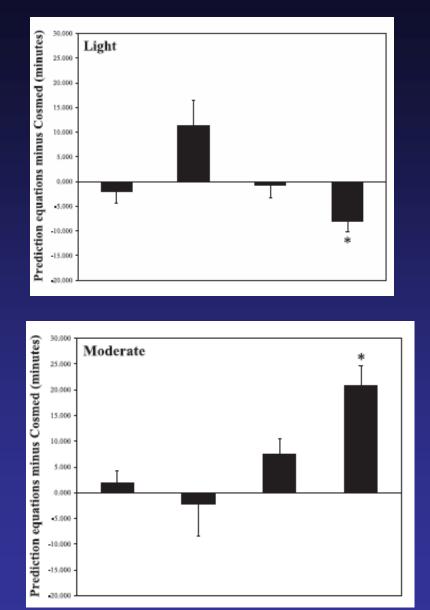
Decision: weighted average of these studies.

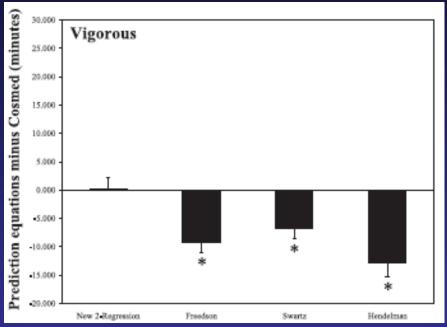
Slide courtesy of Rick Troiano NCI

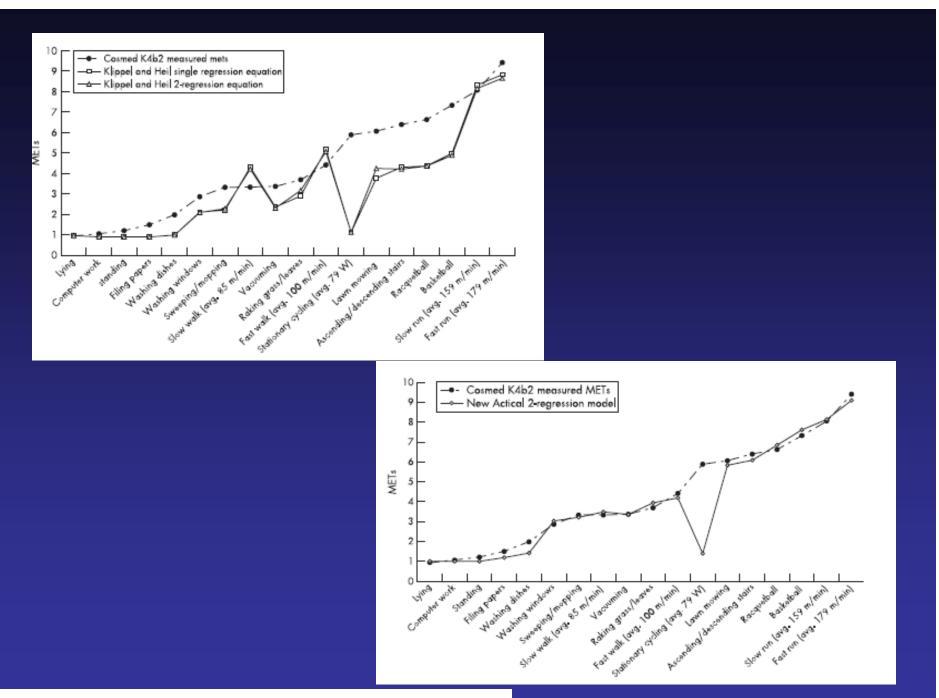
Why do the cut-points differ so much?

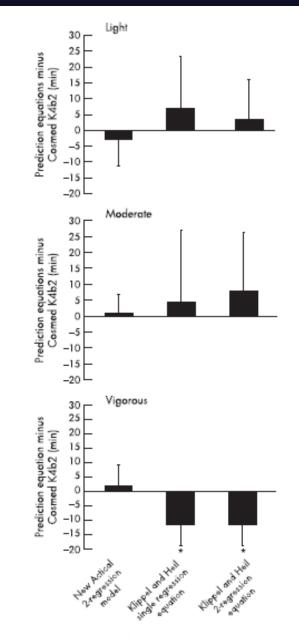


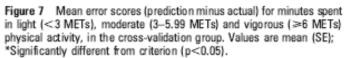

Matthews CE. Med Sci Sports Sci 2005 37(11 Suppl):S512-522

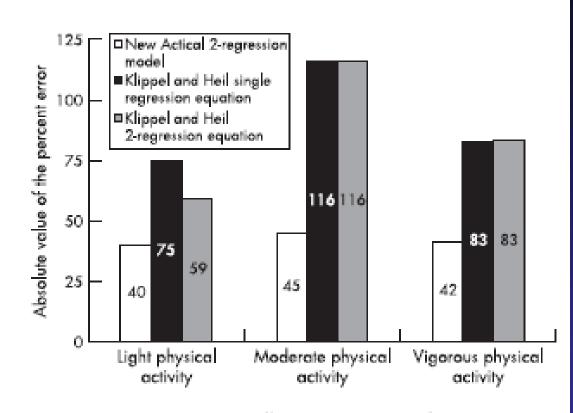

A step forward – 2 regression model

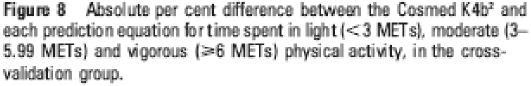

- Crouter et al. JAP 100:1324-1331
- Background
 - No single equation line is able to accurately predict EE or time spent in different intensity categories across a wide range of activities
 - Overestimation of walking and running
 - Underestimation of lifestyle activities
 - Hypothesized that walking and running can be distinguished from other activities on the basis of variability in counts



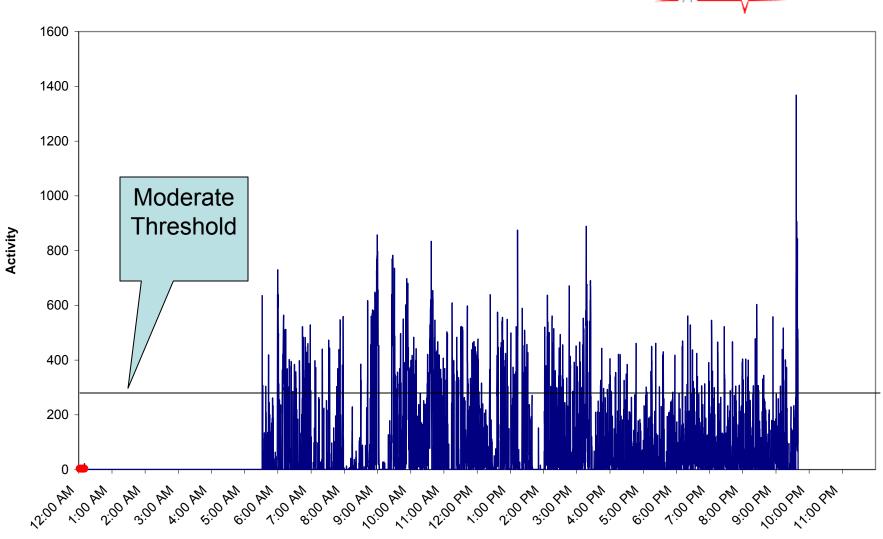








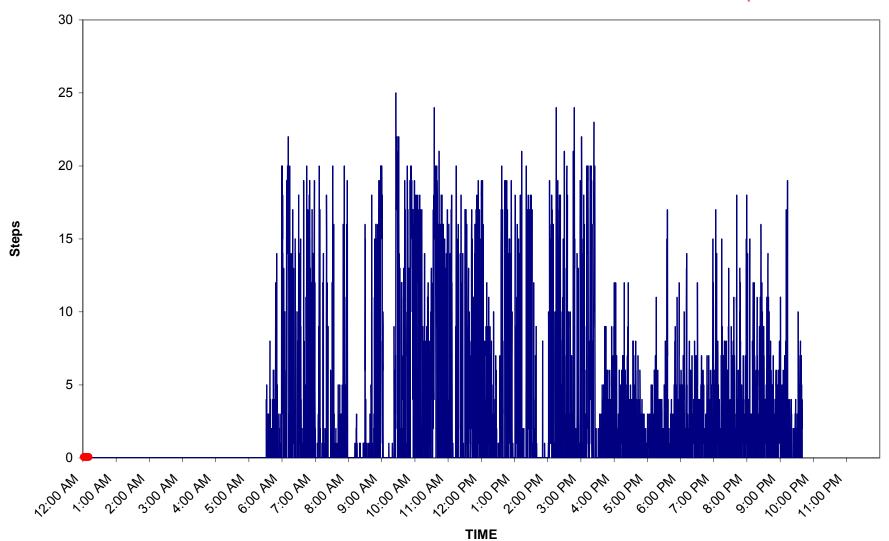
Br. J. Sports Med. 2008;42;217-224;



Br. J. Sports Med. 2008;42;217-224;

Physical Activity at Work – Lauren

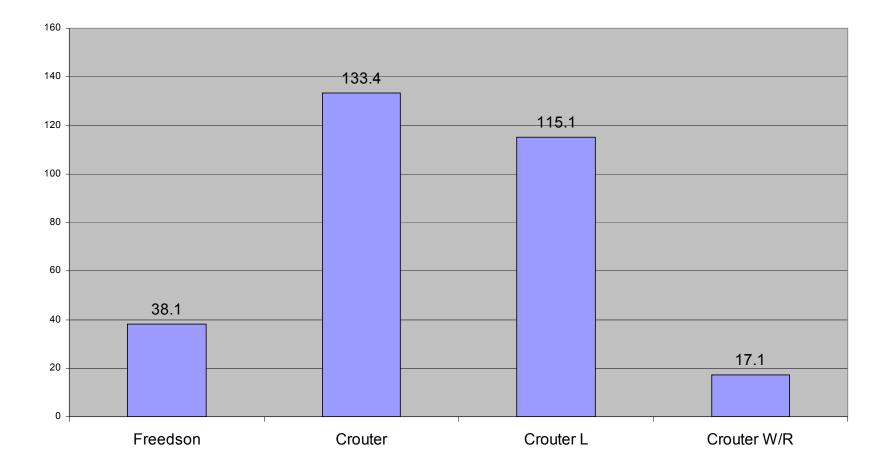
- Wore the Actigraph GT1M accelerometer for the entire work day starting at 6:00 am
- Downloaded at the bar at ~9:45 pm
- Accumulated 18,481 steps
 - 83 min of MVPA (through walking at work)
 - Note: 31 min of MVPA in bouts >= 10 mins
 - 440 min of Light Intensity activity
 - 418 min of Sedentary activity
 - Crouter 479 mins of MVPA (only 5 mins walking)


Activity Counts – Moderate Intensity Activity = 325 counts per 10 s

9/20/08 12:00:00 AM

ctiGraph

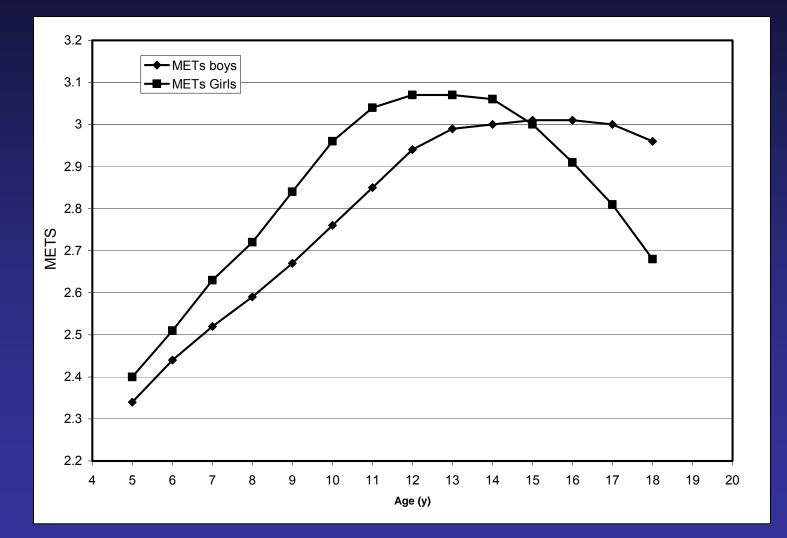
TIME



of Steps per 10 sec: 18,481 steps total


9/20/08 12:00:00 AM

t ctiGraph


Freedson vs. C2R

Calibration in Children and Youth

Effects of Growth and Development of MET level during walking 2.5 mph

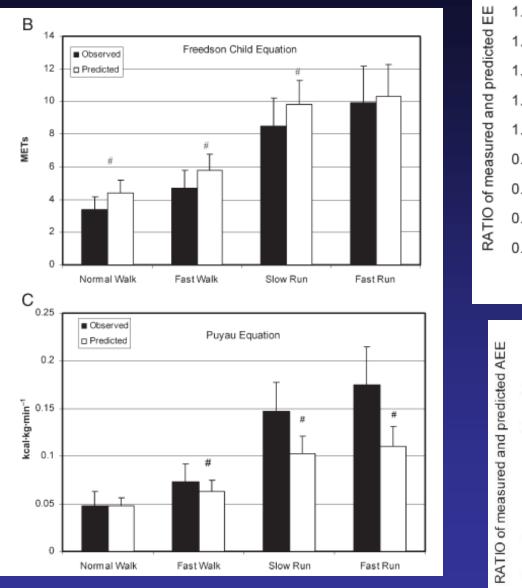
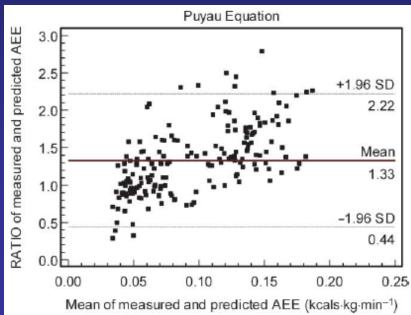

Calibration of Activity Monitors - Youth

Table 2.

Youth-Specific Calibration Equations and Cut Points for the Actigraph, Actical, and RT3 Accelerometers


Author	Sample	Activities	Equation/Cut Points	Error				
Actigraph								
Freedson et al ²⁹	N = 80 Range: 6-18 y Mean age: 11.3 y 41 girls, 39 boys Grades 1-2, n = 17 Grades 3-6, n = 19 Grades 7-9, n = 24 Grades 11-12, n = 20	TM walk and run. 1 common speed: 4.4 km/h; other 2 speeds varied for age (5.6-9.7 km/h)	$\begin{array}{l} \text{METs} = 2.757 + (0.0015 \times \text{cnts/min}) \\ - (0.08957 \times \text{age} [y]) - (0.000038 \times \text{cnts/} \\ \text{min} \times \text{age} [y]) \\ \text{Cut points are age dependent} \\ \text{For a 12-year-old:} \\ \text{SED:} (<1.5 \text{ METs}) < 100 \text{ counts/min} \\ \text{LIGHT:} (1.5 \text{ METs}) = 100 \text{ cnts/min} \\ \text{MPA:} (3 \text{ METs}) = 1263 \text{ counts/min} \\ \text{VPA:} (6 \text{ METs}) = 4136 \text{ counts/min} \end{array}$	SEE = 1.19 METs Rxy = 0.94 Mean bias: -0.05 ± 0.11 METs				
Puyau et al ³⁴	N = 26 Range: 6-16 y Mean age: 10.7 y 12 girls, 14 boys	Walk, run, free- living activities such as computer games, playing with toys, aerobics, skipping, jump rope, soccer	AEE = 0.0183 + 0.000010 (cnts/min) SED: <800 cnts/min LIGHT: (AEE = 0.01) = 800 cnts/min MPA: (AEE = 0.05) = 3200 cnts/min VPA: (AEE = 0.10) = 8200 cnts/min	SEE = 0.0172 kcals/ kg/min No cross-validation data are presented.				
Treuth et al ⁵⁸	N = 74 Range: 13-14 y Girls only	Walk, run, free- living activities such as computer games, household chores, aerobics, shooting baskets	METs = 2.01 + 0.000856 cnts/min METs = 2.01 + 0.00171 cnts/30 s SED: < 100 cnts/min LIGHT: 100 cnts/min MPA: 3000 cnts/min VPA: 5000 cnts/min	Concordance correlation: 0.84 SEE = 1.36 METs 95% Cl for misclassification 2.8%-6.5% in validation sample				

Trost SG. Am J Lifestyle Med 2007;299-314

Trost et al. MSSE 2006

Freedson Equation 1.8 1.6 +1.96 SD 1.4 1.36 1.2 1.0 Mean 0.8 0.87 0.6 -1.96 SD 0.4 0.38 .2 2 6 8 10 12 14 16 4 Mean of measured and predicted EE (METs)

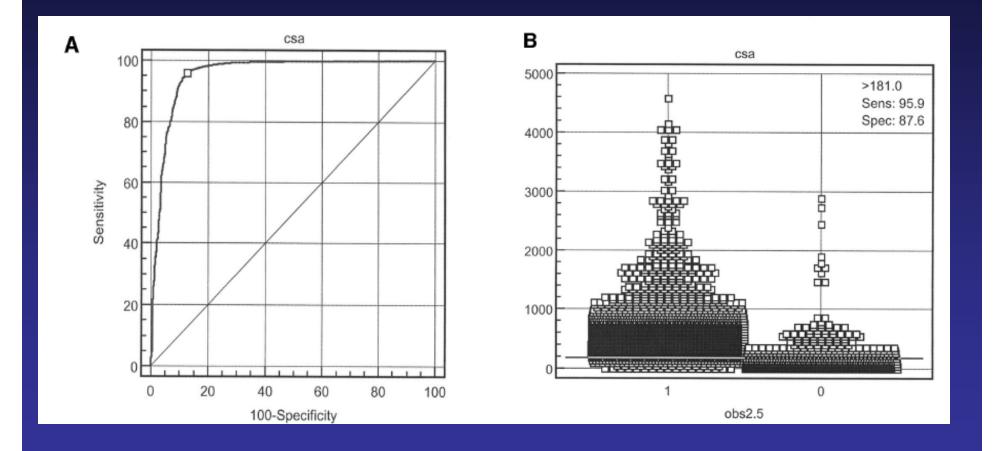
Classification Accuracy

TABLE 4. Percent agreement, sensitivity (Se), specificity (Sp), and area under the receiver operating characteristic (ROC) curve (AUC) for each equation by intensity level.

		Moderate PA			Vigorous PA			
Equation	Alignment (%)	Se (%)	Sp (%)	AUC	Se (%)	Sp (%)	AUC	
Trost	83.9	83.7	85.0	0.84	95.5	88.0	0.92	
Freedson	75.6	68.4	82.7	0.76	93.3	71.4	0.82	
Puyau	71.1	87.5	58.0	0.73	63.6	95.7	0.80	

PA, physical activity.

Trost Equation (MSSE 1998;30:629-633


Kcal/min = -2.23 + 0.0008 counts/min

Trost et al. MSSE 2006

ROC Curve Approach

- A graphical representation of the trade offs between sensitivity and specificity for different cut-points
- False positive rate on x-axis
- True positive rate on y-axis
- Determine the cut-point that yields the fewest misclassifications
- Maximizes AUC (mean of Se & Sp)

ROC Curve Approach

Area under the ROC Curve

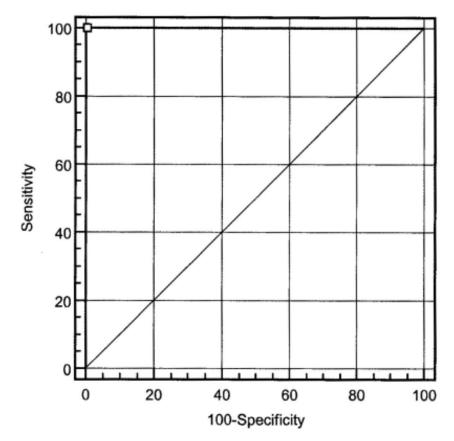


FIGURE 1—Hypothetical ROC curves. The *dark line* shows the best case scenario (perfect sensitivity and specificity) and the *dotted line* shows the worst case scenario (any increase in sensitivity is matched by a reduction in specificity).

Values

- >.90 Excellent
- .80 .90 Good
- .70 .80 Fair
- < .70 Poor

Evenson et al. (2008) J Sport Sci 26;1557-1565

Table II. The activities each participant performed at the two measurement visits by intensity level.

Intensity	Visit	Type of activity	Description
Sedentary	2	Rest	Sit in a reclining chair, awake and still
	3	Watch a DVD	Sit in chair and watch DVD
	3	Colouring books	Sit in chair and colour in books using crayons
Light	3	Slow walk	Walk at 2 mph on treadmill
Moderate	2	Stair climbing	88 bpm on the metronome
	2	Dribble basketball	Dribble around obstacle course
	3	Brisk walk	Walk at 3 mph on treadmill
Vigorous	2	Bicycling	Bicycle on stationary bike (60 bpm – double time)
	3	Jumping jacks	Jumping jacks at 126 bpm with the metropome
	3	Running	Running at 4 mph on treadmill

Note: bpm = beats per minute.

Table V. Sensitivity, specificity and area under the ROC curve and 15-s count cutoffs that maximised sensitivity and specificity* for the ActiGraph and Actical.

	Sensitivity (%)	Specificity (%)	Area under the ROC curve (95% CI)	Count 15 s ⁻¹
ActiGraph				
Sedentary	95	93	0.98 (0.95–0.99)	0-25
Light	NA	NA	NA	26-573
Moderate	77	81	0.85 (0.80-0.90)	574-1002
Vigorous	68	89	0.83 (0.78–0.88)	≥1003
Actical				
Sedentary	97	98	0.99 (0.97-1.00)	0-11
Light	NA	NA	NA	12-507
Moderate	78	79	0.86 (0.81-0.90)	508-718
Vigorous	77	79	0.86 (0.81-0.90)	\geq 719

Notes: NA, not applicable using ROC curve analysis.

*Defined as the count that gave equal weight to sensitivity and specificity.

Predictive Validity – ActiGraph Equations

Equation	SED			LIGHT			MVPA		
	Se%	Sp%	AUC	Se%	Sp%	AUC	Se%	Sp%	AUC
Freedson	100	75.1	0.88	42.7	91.5	0.67	87.9	92.0	0.90
Puyau	100	73.5	0.87	38.5	65.6	0.52	52.0	99.0	0.76
Treuth	98.2	89.1	0.94	65.1	89.7	0.77	83.2	91.1	0.87
Mattocks	100	76.7	0.88	53.7	67.0	0.60	57.0	99.6	0.78
Evenson	100	75.4	0.88	44.7	91.0	0.68	87.3	93.1	0.90

Extracting Bouts

- Guideline driven
- Adults studies typically specify that activity be counted only in 10-min bouts
- Has a huge impact on the estimated amount of moderate physical activity
- Definition of a bout

Extracting Bouts

- Strict definition of a bout.
- Minutes are accumulated if and only if they were performed as part of a 10-min or longer bout in which 10 or more consecutive 1-min epochs were above the count cutoff for moderate intensity activity (3 METs).
- The bout, and hence the accumulation of MVPA minutes, ends as soon as the program encounters a single count below the moderate cut-point.

Extracting Bouts

- Variety of approaches are possible
- Need for ecologically validity
 - Interruption Interval Counts are permitted to dip below the count cut-point for 1-min
 - The bout and hence the accumulation of MVPA minutes will continue if the program encounters a count above the threshold *immediately* after reading the last count below threshold.

Imputation of Missing Data

- Observed data values are used to predict missing values.
- Accuracy will depend on the number of predictors available, correlation with missing variable, amount of missing data, and pattern of missing values.
- Multiple Imputation methods could be used to predict missing values for segments within a day or the entire day. Proc MI in SAS
- See Catellier et al. MSSE NOV 2005 Suppl.

The Future -Pattern Recognition?

Development of Novel Techniques to Classify Physical Activity Mode Using Accelerometers

DAVID M. POBER^{1,2}, JOHN STAUDENMAYER², CHRISTOPHER RAPHAEL², and PATTY S. FREEDSON¹

¹Department of Exercise Science, Exercise Physiology Laboratory, University of Massachusetts, Amherst, MA; and ²Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA

ABSTRACT

POBER, D. M., J. STAUDENMAYER, C. RAPHAEL, and P. S. FREEDSON. Development of Novel Techniques to Classify Physical Activity Mode Using Accelerometers. Med. Sci. Sports Exerc., Vol. 38, No. 9, pp. 1626-1634, 2006. Purpose: Use of accelerometers to assess physical activity (PA) is widespread in public health research, but their utility is often limited by the accuracy of data-processing techniques. We hypothesized that more sophisticated approaches to data processing could distinguish between activity types based on accelerometer data, providing a more accurate picture of PA. Methods: Using data from MTI Actigraphs worn by six subjects during four activities (walking, walking uphill, vacuuming, working at a computer), quadratic discriminant analysis (QDA) was performed, and a hidden Markov model (HMM) was trained to recognize the activities. The ability of the new analytic techniques to accurately classify PA was assessed. Results: The mean (SE) percentage of time points for which the ODA correctly identified activity mode was 70.9% (1.2%). Computer work was correctly recognized most frequently (mean (SE) percent correct = 100% (0.01%)), followed by vacuuming (67.5% (1.5%)), uphill walking (58.2% (3.5%)), and walking (53.6% (3.3%)). The mean (SE) percentage of time points for which the HMM correctly identified activity mode was 80.8% (0.9%). Vacuuming was correctly recognized most frequently (mean (SE) percent correct = 98.8% (0.05%)), followed by computer work (97.3% (0.7%)), walking (62.6% (2.3%)), and uphill walking (62.5% (2.3%)). In contrast to a traditional method of data processing that misidentified the intensity level of 100% of the time spent vacuuming and walking uphill, the ODA and HMM approaches correctly estimated the intensity of activity 99% of the time. Conclusion: The novel approach of estimating activity mode, rather than activity level, may allow for more accurate field-based estimates of physical activity using accelerometer data, and this approach warrants more study in a larger and more diverse population of subjects and activities. Key Words: ACTIGRAPH, CLASSIFICATION, HIDDEN MARKOV MODEL, QUADRATIC DISCRIMINANT ANALYSIS