4.3. Analyzing exposure (proximities) and accessibilities (deMontigny; bus stops versus bus use)

Proximity and opportunity: Parks and convenience store density

Transit: ENVIRONMENT (EXPOSURE) VS. BEHAVIOR (ACCESS)

KDE analysis of Bus Stops (stop/sqrmile)

KDE analysis of Bus Ridership (rider/sqrmile)

Discarded needles and the urban environment: A spatial analysis of attractors, deterrents and disposal options Luc de Montigny 2008

Figure 2: Map of study area

Figure 3: Map of locations of discarded needles collected in non-park open spaces

Measurement

Example of Proximity Measure

Measurement

Exposure

Luc de Montigny 2008

Figure 4: Map of "walkable" area

Figure 18: Map of the sample-frame

Luc de Montigny 2008

Figure 8: Interpolation of census data for incomplete dissemination areas Where, 1) Census units; 2) Units with missing data; 3) Interpellation; and 4) Example of application

Figure 9: Aggregation of parcel data by dissemination area
Where, 1) Parcel boundaries; 2) Residential parcels by assessed value; 3) Census unit overlay;
and 4) Example of application

Figure 5: Measurement of proximity using Euclidean distance Where, 1) Straight-line distance; 2) Through barriers, and 3 & 4) Examples of application

Figure 10: Measurement of visual exposure
Where, 1) Field of view; 2) Isovist field for single observer; 3) Grid of observation points;
and 4) Example of application

Figure 11: Measurement of artificial lighting Where, 1) Uninterrupted Euclidean buffers; 2) Buffers and barriers; 3) Euclidean distance measure; and 4) Euclidean distance clipped by barriers

4.4. Cluster analysis Neighborhood Centers

Neighborhood Centers

- Retail only (3 minimum within 50 M)
- Retail, Grocery, and Restaurant (1 of each, 3 minimum within 50 M)

4.4. Cluster analysis Moran I's and SaTScan)

4.4. Geospatial analyses to measure and model the environment or behaviors (neighborhood centers; clustering Moran I's and SatScan)

Deprivation index and reported health status

Perception of neighborhood crime

Self-reported diabetes SatScan vs Moran's I

Summaries

- Scale & resolution
- Time-space dimensions
- Exposure vs. access/use
- Clustering (people & environment)

References

- Berke, E., Gottlieb, L., Moudon, AV, Larson, EB. N. (2007). Protective Association between Neighborhood Walkability and Depression in Older Men. J Am Geriatr Soc 2007 55(4): 526-533.
- Berke, E., Koepsell, T., Moudon, A., Hoskins, R. (2007). Association of the Built Environment with Physical Activity and Obesity in Older Persons. American Journal of Public Health 97(3): 1-7.
- de Montigny, L., Vernez Moudon, A., Leigh, B., Young, K. Assessing a Drop Box Programme: A Spatial Analysis of Discarded Needles. (1873-4758 (Electronic)).
- Ershow, A.G., Ortega, A., Baldwin, J.T., Hill, J.T. Engineering Approaches to Energy Balance and Obesity: Opportunities for Novel Collaborations and Research, Report of a Joint National Science Foundation and National Institutes of Health Workshop. Journal of Diabetes Science and Technology 1(1): 95-105.
- Huang, L., Stinchcomb, D.G., Pickle, L.W., Dill, J., Berrigan, D. (2009). Identifying Clusters of Active Transportation Using Spatial Scan Statistics. Am J Prev Med 37(2): 157-166.
- Lee, C., Moudon, A.V. (2006). The 3Ds + R: Quantifying Land Use and Urban Form Correlates of Walking. Transportation Research Part D: Transport and Environment 11(3): 204-215.

References

- Lee, C., Moudon AV. (2006). Environmental Correlates of Walking for Transportation or Recreation Purposes. Journal of Physical Activity and Health 3(Suppl1): S77-98.
- Lee, C., Moudon, A.V., Courbois, J.-Y.P. (2006). Built Environment and Behavior: Spatial Sampling Using Parcel Data. Annals of Epidemiology 16(5): 387-394.
- Matthews, S.A., Moudon, A.V., Daniel, M. (2009). Work Group Ii: Using Geographic Information Systems for Enhancing Research Relevant to Policy on Diet, Physical Activity, and Weight. American Journal of Preventive Medicine 36(4, Supplement 1): S171-S176.
- Moudon, A.V., Lee, C., Cheadle, A.D., Garvin, C.W., Johnson, D.B., Schmid, T.L., Weathers, R.D. (2007). Attributes of Environments Supporting Walking. American Journal of Health Promotion 21(5): 448-459.
- Rodriguez, D., A. Brown, P.J. Troped (2005). Portable global positioning units to complement accelerometry-based physical activity monitors. Medicine & Science in Sports & Exercise, S572-581
- Schuurman, N., Peters, P.A., Oliver, L.N. (2009). Are Obesity and Physical Activity Clustered? A Spatial Analysis Linked to Residential Density. Obesity (Silver Spring) 17(12): 2202-2209.
- Troped, P.J, M.S. Oliveira, M.S., C.E. Matthews, E.K. Cromley, S.J. Melly, and B.A. Craig (2008). Prediction of activity mode with global positioning system and accelerometer data. Medicine & Science in Sports & Exercise, 40(5) 972-978
- Wieters, M, J. Kim, C. Lee (2008). Assessment of available research instruments for measuring physical activity. Association of Collegiate Schools of Planning, Chicago, IL.

Objective 4

Learn and discuss about geospatial analyses to measure and model the environment or behaviors

4.1. Predicting behavior based on environmental exposure and access/use

Surface Models

- <u>LOCATIONS</u>: 608 random sample of survey respondents in the sample frame
- ESTIMATING PROBABILITY OF

 WALKING: Multinomial logistic regression
 models were developed to estimate the
 probability of a "Moderate Walker" (1-149
 min per week) or "Sufficient Walker" (>=150
 min per week), relative to not walking (0 min
 walking per week).
- VALUES of LOCATIONS: values (probability of walking) are calculated using the regression

WBC Audit Instruments

Methods

- Multinomial logit models estimating
 - odds of walking sufficiently (150+minutes per week, meeting the recommendation for health)
 - moderately (1-149 minutes per week),
 - relative to not walking
- Objective environmental variables that showed statistical significance in the models were translated into audit items.

Top predictors of walkability

Environmental Characteristic

(Threshold Value)

Odds ratio of walking >150 min/week vs. not walking

	(airline measurement)
•Shorter distance to closest grocery store (<440 m)	2.257**
•Fewer grocery stores or markets within buffer (less than 3.7)	1.50*
•More grocery store/restaurant/retail clusters in 1km buffer (more than 1.8)	1.697**
•More dwelling units per acre of the parcel where the residence is located (more than 21.7 units/net acre)	1.959**
•Fewer educational parcels in 1km buffer (less than 5.1)	1.553*
•Smaller size of closest office complex (less than 36,659 m2 or 9 acres)	1.28*
•Longer distance to closest office/mixed use complex (more than 544 m)	1.27* [§]
•Smaller block size where residence is located (less than 23,876 m2 or 5.9 acres)	1.19*

^{*} p < 0.1; **p < 0.05

Adapted from Moudon AV, Lee C, Cheadle A, et al. Attributes of Environments Supporting Walking. Am J Health Promot. 2007;21(5):448-459. *: significant at 0.1 level; **: significant at 0.05 level

Surface Modeling Algorithm

WBC Surface modeling

Likelihood of Sufficient Walking

(>150 minute a week)

Older Adult >65 Younger Adults <35

UW Urban Form Lab

Walk and Bike Communities project

Probability of Walking Sufficiently

(>150 minute a week)

High / Low Reported Income (>\$75,000 vs. <\$25,000)

4.2. Maps in GIS can serve as data layers

E. Berke

Berke E, Koepsell T, Moudon A, Hoskins R. Physical activity and obesity in older persons: association with the built environment. American Journal of Public Health 97, 3:1-7

Berke EM, Gottlieb LM, Moudon AV, Larson EB. Protective Association of Neighborhood Walkability with Depression in Older Males. J Am Geriatr Soc. In Press.

Research Goal

-Evaluate the association of individual-level neighborhood walkability with depression and physical activity in older adults.

E. Berke

Subject Population

- Adult Changes in Thought (ACT) study
 - •Group Health Cooperative study 1994 present
 - Prospective longitudinal design
 - •≥ 65 y/o
 - •~2500 subjects
 - Surveyed biennially
 - •Information on BMI, self-reported walking, depression
 - Chronic dz burden, demographics, health conditions

Neighborhood

- Subjects geocoded at parcel level
 - 100m, 500m, 1000m, buffers
- Walkability score computed for each person at each buffer size

E. Berke Individual-Level Advantages

- Precise description of habitat immediately around subject's home
- Not census or other aggregate measure
- Reduced risk of ecologic fallacy

Results Walkability Score and Walking

Older adults (65-97; n = 936)

Berke E, Koepsell T, Moudon A, Hoskins R. Physical activity and obesity in older persons: association with the built environment. American Journal of Public Health 97, 3:1-7

✓ Higher walkability scores significantly associated with more walking for exercise across buffers of varying radii

(for men, odds ratio [OR]=5.86; CI=1.01, 34.17 to OR=9.14; CI=1.23, 68.11; for women, OR=1.63; CI=0.94, 2.83 to OR=1.77; CI=1.03, 3.04).

✓ A trend toward lower body mass index in men living in more walkable neighborhoods did not reach statistical significance.

Results

Walkability Score and Depression

(n = 740; >65y)

Berke EM, Gottlieb LM, Moudon AV, Larson EB. Protective Association of Neighborhood Walkability with Depression in Older Males. J Am Geriatr Soc. In Press.

- ✓ Physical activity known to be inversely related to depression in older persons
- ✓ Neighborhood Walkability Scores negatively associated with depression in older males [adjusted for individual-level risk factors of income, physical activity, education, smoking status, living alone, age, and chronic disease burden]
- ✓ OR (interquartile range of walkability score, 25th-75th percentile) = 0.32 to 0.34 for buffer radii of 100, 500, and 1000 m (p = 0.01 to 0.02)

4.3. Analyzing exposure (proximities) and accessibilities (deMontigny; bus stops versus bus use)

Proximity and opportunity: Parks and convenience store density

Transit: ENVIRONMENT (EXPOSURE) VS. BEHAVIOR (ACCESS)

KDE analysis of Bus Stops (stop/sqrmile)

KDE analysis of Bus Ridership (rider/sqrmile)

Discarded needles and the urban environment: A spatial analysis of attractors, deterrents and disposal options Luc de Montigny 2008

Figure 2: Map of study area

Figure 3: Map of locations of discarded needles collected in non-park open spaces

Measurement

Example of Proximity Measure

Measurement

Exposure

Luc de Montigny 2008

Figure 4: Map of "walkable" area

Figure 18: Map of the sample-frame

Luc de Montigny 2008

Figure 8: Interpolation of census data for incomplete dissemination areas Where, 1) Census units; 2) Units with missing data; 3) Interpellation; and 4) Example of application

Figure 9: Aggregation of parcel data by dissemination area
Where, 1) Parcel boundaries; 2) Residential parcels by assessed value; 3) Census unit overlay;
and 4) Example of application

Figure 5: Measurement of proximity using Euclidean distance Where, 1) Straight-line distance; 2) Through barriers, and 3 & 4) Examples of application

Figure 10: Measurement of visual exposure
Where, 1) Field of view; 2) Isovist field for single observer; 3) Grid of observation points;
and 4) Example of application

Figure 11: Measurement of artificial lighting Where, 1) Uninterrupted Euclidean buffers; 2) Buffers and barriers; 3) Euclidean distance measure; and 4) Euclidean distance clipped by barriers

4.4. Cluster analysis Neighborhood Centers

Neighborhood Centers

- Retail only (3 minimum within 50 M)
- Retail, Grocery, and Restaurant (1 of each, 3 minimum within 50 M)

4.4. Cluster analysis Moran I's and SaTScan)

4.4. Geospatial analyses to measure and model the environment or behaviors (neighborhood centers; clustering Moran I's and SatScan)

Deprivation index and reported health status

Perception of neighborhood crime

Self-reported diabetes SatScan vs Moran's I

Summaries

- Scale & resolution
- Time-space dimensions
- Exposure vs. access/use
- Clustering (people & environment)

References

- Berke, E., Gottlieb, L., Moudon, AV, Larson, EB. N. (2007). Protective Association between Neighborhood Walkability and Depression in Older Men. J Am Geriatr Soc 2007 55(4): 526-533.
- Berke, E., Koepsell, T., Moudon, A., Hoskins, R. (2007). Association of the Built Environment with Physical Activity and Obesity in Older Persons. American Journal of Public Health 97(3): 1-7.
- de Montigny, L., Vernez Moudon, A., Leigh, B., Young, K. Assessing a Drop Box Programme: A Spatial Analysis of Discarded Needles. (1873-4758 (Electronic)).
- Ershow, A.G., Ortega, A., Baldwin, J.T., Hill, J.T. Engineering Approaches to Energy Balance and Obesity: Opportunities for Novel Collaborations and Research, Report of a Joint National Science Foundation and National Institutes of Health Workshop. Journal of Diabetes Science and Technology 1(1): 95-105.
- Huang, L., Stinchcomb, D.G., Pickle, L.W., Dill, J., Berrigan, D. (2009). Identifying Clusters of Active Transportation Using Spatial Scan Statistics. Am J Prev Med 37(2): 157-166.
- Lee, C., Moudon, A.V. (2006). The 3Ds + R: Quantifying Land Use and Urban Form Correlates of Walking. Transportation Research Part D: Transport and Environment 11(3): 204-215.

References

- Lee, C., Moudon AV. (2006). Environmental Correlates of Walking for Transportation or Recreation Purposes. Journal of Physical Activity and Health 3(Suppl1): S77-98.
- Lee, C., Moudon, A.V., Courbois, J.-Y.P. (2006). Built Environment and Behavior: Spatial Sampling Using Parcel Data. Annals of Epidemiology 16(5): 387-394.
- Matthews, S.A., Moudon, A.V., Daniel, M. (2009). Work Group Ii: Using Geographic Information Systems for Enhancing Research Relevant to Policy on Diet, Physical Activity, and Weight. American Journal of Preventive Medicine 36(4, Supplement 1): S171-S176.
- Moudon, A.V., Lee, C., Cheadle, A.D., Garvin, C.W., Johnson, D.B., Schmid, T.L., Weathers, R.D. (2007). Attributes of Environments Supporting Walking. American Journal of Health Promotion 21(5): 448-459.
- Rodriguez, D., A. Brown, P.J. Troped (2005). Portable global positioning units to complement accelerometry-based physical activity monitors. Medicine & Science in Sports & Exercise, S572-581
- Schuurman, N., Peters, P.A., Oliver, L.N. (2009). Are Obesity and Physical Activity Clustered? A Spatial Analysis Linked to Residential Density. Obesity (Silver Spring) 17(12): 2202-2209.
- Troped, P.J, M.S. Oliveira, M.S., C.E. Matthews, E.K. Cromley, S.J. Melly, and B.A. Craig (2008). Prediction of activity mode with global positioning system and accelerometer data. Medicine & Science in Sports & Exercise, 40(5) 972-978
- Wieters, M, J. Kim, C. Lee (2008). Assessment of available research instruments for measuring physical activity. Association of Collegiate Schools of Planning, Chicago, IL.