
Statistical Approaches to Testing Ecological Models of Physical Activity Behavior Ester Cerin, PhD Baylor College of Medicine

Greg Norman, PhD

University of California, San Diego

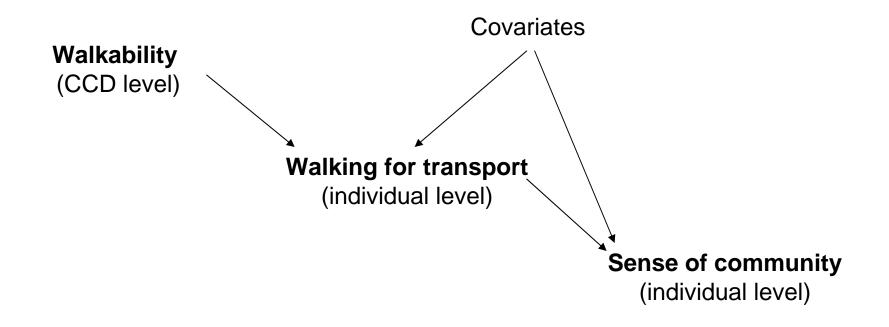
Aims

- What models can we use with multilevel data?
- How do we interpret the results?
- What questions can we answer?
- What questions do you have for us?

GENERAL AIM OF PLACE ...

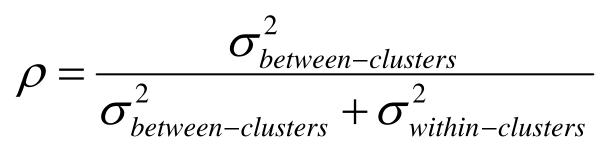
To examine the relationships between physical attributes of the local community and transport-related and leisure time physical activity

- N = 2650 (aged 20-65) Adelaide, Australia
- Multi-stage stratified sampling strategy
- 156 Census Collection Districts


High SES and high walkability
High SES and low walkability
Low SES and high walkability
Low SES and low walkability

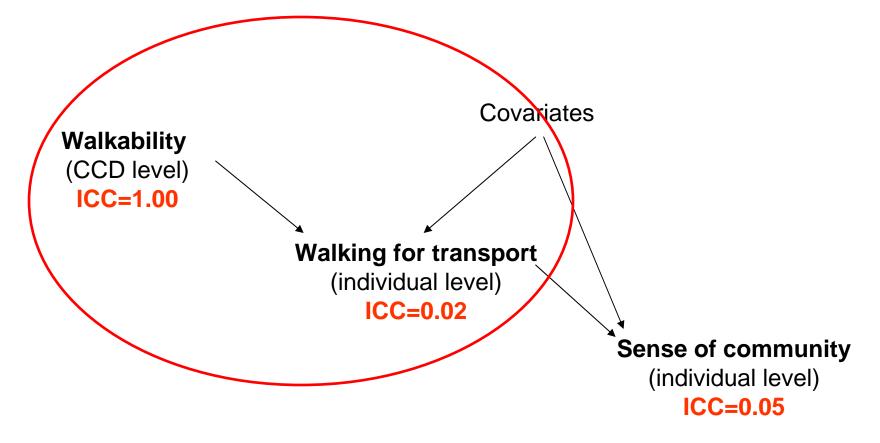
62											
🔲 Data Ed	itor										
		Cash (>> Hio		1						
Preserve	Restore	Sort <<		le Dele	:(e						
	· · · ·	id[263] =				_					
262	id	ccd	median_wk_~c	hhld_size	walkability2	sei	ise_comm	informal_s~l	soc_cohesion	asingle	ato
263	D3768	4081001	5	2.3	20		10	17	11	Most	
264	D4029	4081001	5	2.3	20		8	10	15	Most	
265	D4031	4081001	5	2.3	20		10	19	16	Most	_
266	D4022	4081001	5	2.3	20		11	25	19	None	
267	D3003 D3937	4081004	5	2.5	19		12	23	20	Some	
268		4081004	5	2.5	19		9	19	16	Most	
269	D2434	4081004	5	2.5	19		9	16 5	20	Most	
270	D2601 D3934	4081004	5	2.5	19		6 7		7	Most	
271		4081004	5	2.5	19			19	17	Most	
272	D4016	4081004	5		19		12	20	12	Some	
273	D3895 D2441	4081004 4081004	5	2.5	19		11 10	18	13	Most Most	_
274 275	D2441 D3927	4081004	5	2.5	19 19		10	16	17		_
275	D3927 D3943	4081004	5	2.5	19		6	18	17	Most Most	_
276	D3943 D3892	4081004	5	2.5	19			23	12		_
	D3892 D3978	4081004	5	2.5	19		11 8	16	16	Most All	_
278 279	D3978 D3965	4081004	5	2.5	19		° 10	15	17	All	_
2/9	D3965	4081004	5	2.5	19		10	13	16	Most	_
280	D2736	4081004	5	2.5	19		9	16	10	Most	_
281	D2444	4081004	5	2.5	19						_
282	D3907	4081004	5	2.5	19		⊢ Re	esponder	nt level va	riables	_
285	D2579						10	- 18	17	Most	+
285	D2482	408100	Area leve		19		9	17	12	Most	
285	D4073	408100	5	2.7	21		10	18	12	Most	-
287	D2929	4081102	5	2.7	21		7	16	16	Most	
287	D2093	4081102	5	2.7	21		10	10	15	Most	
289	D4045	4081102	5	2.7	21		10	17	12	All	
209	D4088	4081102	5	2.7	21		10	17	13	Most	
290	D4000	4081102	5	2.7	21		11	22	19	All	
291		4001102		2.7					15	M+	

PLACE: variables


Census Collection District level	Individual level
GIS-based walkability	Weekly minutes of walking for transport
Median weekly income	Age
Median age	Gender
Average sense of community	Sense of community
??	Perceived access to services

Correlated data

- Clustering
- Intraclass correlation coefficient


- Observations are not independent
- Violation of independence assumption (independent and identically distributed errors) and use of standard statistical methods
 - Incorrect standard errors
 - Clustering primarily affects variance or precision of estimation rather than bias (unless individual-level associations between factors measured at the individual level differ from those at the area-level)

Effects of clustering (1)

- Comparisons between individuals grouped in clusters (e.g., area effect): less precise, or less informative, than comparisons made between the same number of completely independent individuals
- Individuals from the same cluster provide a smaller amount of information than completely independent individuals (random sample)
- The higher the ICC, the smaller the amount of information

Area effects

Example: Effect of clustering (1)

No. of Concession, Name			_		
. regress walk	tr1860 walkab	ility2			
. Source	SS	df	MS	Number of ob: F(1, 2192)	
Model Residual	919780.993 240400149	1 9197 2192 1096	80.993 71.601	Prob > F R-squared Adj R-squared	= 0.0038 = 0.0038
Total	241319930	7193 1100	41.008	Root MSE	= 331.17
walktr1860	Coef.	Std. Err.	t P;	> t [95% Conf.	Interval]
walkability2 _cons	2.634455 159.784 <mark>8</mark>	.9096947 16.65254		.004 .8505011 .000 127.1284	4.418409 192.4412
Linear regress Number of clust		.54		Number of ob F(1, 153 Prob > F R-squared Root MSE	
walktr1860	Coef	Robust Std. Err.	t P:	> t [95% Conf	. Interval]
walkability2 _cons	2.634455 159.7848	1.019193 16.79041		.011 .6209474 .000 126.6138	4.647963 192.9558

Effects of clustering (2)

- Comparisons between individuals within a cluster: more precise, or more informative, than comparisons made between individuals in different clusters
- If the variation between observations is less within clusters than between, then by just comparing within those clusters we should be able to see differences more clearly

ICC= 0.75

. regress y x						
Source	SS	df	MS		umber of obs	
Model Residual	5.37574409 85.9636315	1 14	5.37574409 6.1402594	F	rob > F -squared dj R-squared	= 0.3653 = 0.0589
Total	91.3393756	15	6.08929171		oot MSE	= 2.478
У	Coet.	Std. E	rr. t	P> t	[95% Conf.	Interval]
x _cons	.2529762 3.417857	.2703 1.3652		0.365 0.025	3269034 .4896087	.8328558 6.346105
			(Std. Enn.	. adjusted	d for cluster	ing on ccd)
У	Coef.	Semi-ro Std. 1		P> z	[95% Conf	. Interval]
x _cons	1.008214 .0192862	.0496 1.740		0.000 0.991	.910894 -3.392244	1.105534 3.430817

be

Modeling multilevel data: 'Ordinary' single-level regression

Inclusion of dummy variables representing Inclusion of commy variables representing the predictor clusters + their interaction with the predictor

req v x	dummv1	dummv2	dummy3	xd1	xd2 🔅	xd3

У	Coef.	Std. Err.	t	P> t	[95% Conf	. Interval]
x dummy1 dummy2 dummy3 xd1 xd2 xd3	1.09 .6600007 4.310001 -4.309999 2200001 0800001 0100001	.0981071 .7006246 .7006246 .9150818 .1387443 .1387443 .1387443	11.11 0.94 6.15 -4.71 -1.59 -0.58 -0.07	0.000 0.374 0.000 0.002 0.151 0.580 0.944	.8637648 9556425 2.694357 -6.420182 5399452 3999451 3299452	1.316235 2.275644 5.925644 -2.199817 .0999449 .2399449 .3099449
_cons	3100007	. 6470605	-0.48	0.645	-1.802125	1.182124

reg y x dummy1 dummy2 dummy3

Source	SS	df	MS		Number of obs = 16 F(4, 11) = 462.94		
Model Residual	90.8000007 .539374949		2.7000002 049034086		Prob > F R-squared Adj R-squared	= 0.0000 = 0.9941	
Total	91.33 <mark>6</mark> 6	15 6	.08929171		Root MSE	= .22144	
У		Std. Er	r. t	P> t	[95% Conf.	Interval]	
×	1.0125	.049514	7 20.45	0.000	.9035189	1.121481	
dummy1	2	.252476	4 -0.79	0.445	7556967	.3556968	
dummy2	3.8	.252476	4 15.05	i 0.000	3.244303	4.355697	
dummy3	-4.375	.156579	2 –27.94	0.000	-4.719628	-4.030372	
_cons	.1937499	.340357	2 0.57	0.581	5553713	.9428711	

Modeling multilevel data: 'Ordinary' single-level regression

Advantages

Easy

Does not require specialized statistical software

Disadvantages

□ Loss of power and efficiency

- With 154 CCDs and 1 predictor of interest we would require 306 variables!!
- Cannot simultaneously estimate predictors' effects and outcome variance attributable to different levels of variation (area and individual)

Modeling multilevel data: Single-level regression with robust standard errors (sandwich; Huber-White estimators)

Advantages: easy to use

- OK to use when:
 - Examining area effects (predictors are measured at the area level / or aggregated at the area level)
 - Examining associations between individual-level variables AND area- & individual-level effects are similar, OR both contextual and individual level effects are included in the model

 \Box Requires a large number of clusters (N > 20!)

Disadvantages:

- Inefficient
- Cannot simultaneously estimate predictors' effects and outcome variance attributable to different levels of variation (area and individual)
- □ Cannot account for more than 2 levels of variation

Contextual effects???

A predictor's average value for each cluster

ID	Area	Y	Х	Mean(X)	X - Mean(X)
1	1	12	3	4	-1
2	1	13	5	4	1
3	2	11	4	3.5	0.5
4	2	10	3	3.5	-0.5
5	3	13	6	7	-1
6	3	16	8	7	1

A bit of scary math ...

 $Y_{ij} = \beta_0 + \beta_1 X_{ij} + \beta_2 X_j$ Individual-level effect Contextual effect

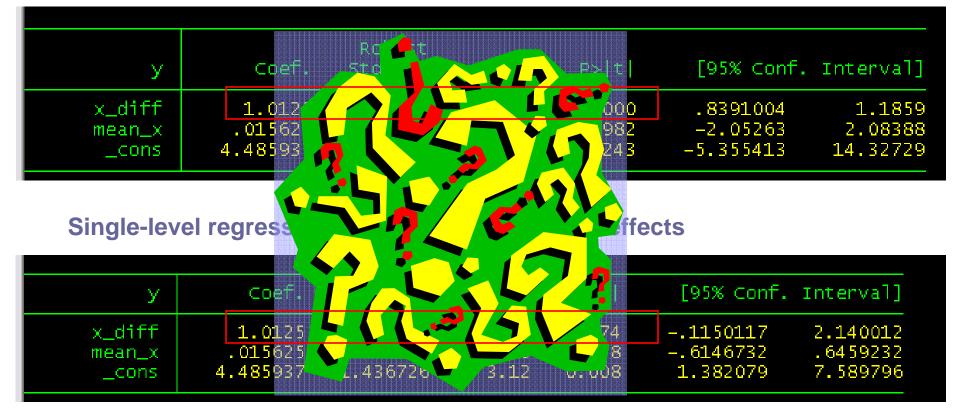
The 'mystery' model

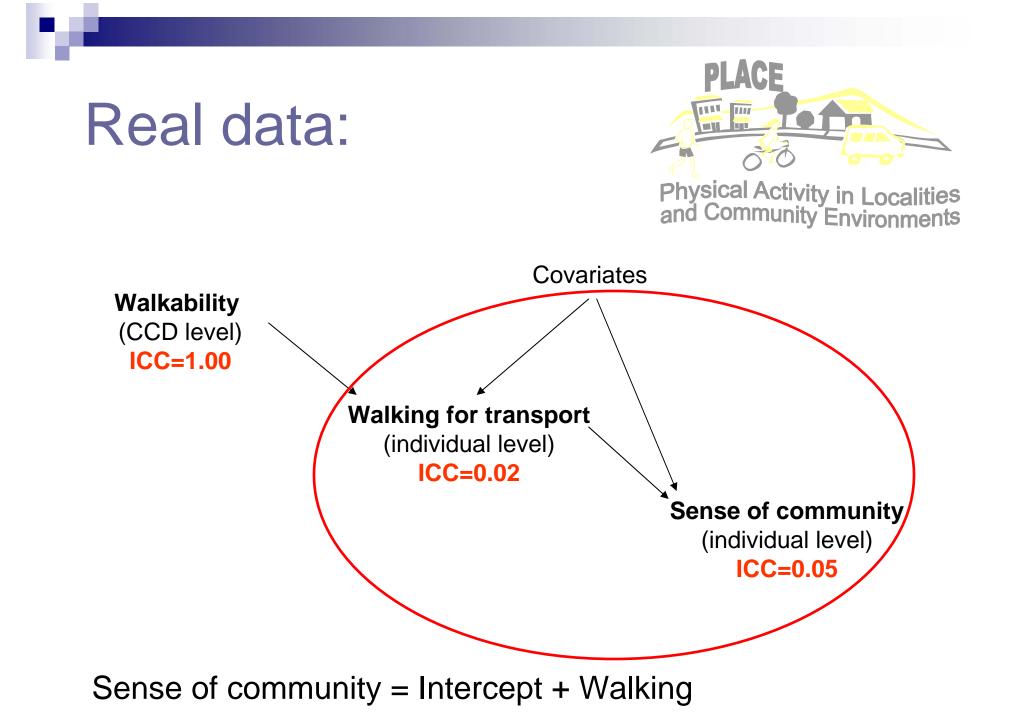
		(St	d. Err.	adjuste	d for clusteri	ng on ccd)
У	Coef.	Semi-robust Std. Err.	z	P> z	[95% Conf.	Interval]
x _cons	1.008214 .0192862				.910894 -3.392244	1.105534 3.430817

Single-level regression with robust standard errors

		Dobust				
Y.	coef.	Std. Err.		D :		Intervell
	.2529762	.47291	0.53	0.630	-1.252035	1.757987
cons	3.417857	2.380319	1.44	0.247	-4.157381	14.9931

Single-level regression with robust standard errors, adjusted for contextual effects

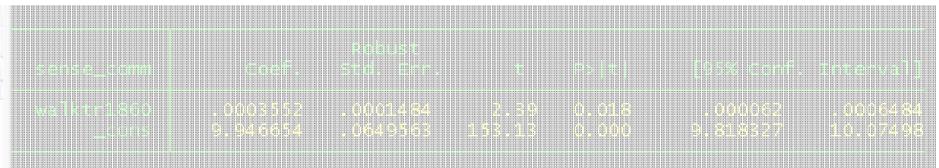

 Robust
 Fall
 1.0125
 .0544863
 18.58
 C.000
 .8391004
 1.1859


 wear_>
 .015625
 .6498948
 0.02
 C.982
 -2.05265
 2.08388

 _cons
 4.485987
 3.092385
 1.45
 C.243
 -5.355413
 14.32729

What if we do not account for clustering effects (do not use robust standard errors)?

Single-level regression with robust standard errors, adjusted for contextual effects



The 'mystery' model

		(s	td. Err.	adjuste	d for clusteri	ng on ccd)
sense_comm	Coef.	Semi-robust Std. Err.		P> 2	[95% Conf.	Interval]
walktr1860 _cons	.0003305 9.93914	.0001477 .0659446		0.025 0.000	.000041 9.809891	.0006199 10.06839

Single-level regression with robust standard errors

Single-level regression with robust standard errors,

adjusted for contextual effects

		C THE ST			
sense_comm	coef.	Std. Err.	t P>[t]	[95% conf.	Interval]
woll d	0002601	000152	1 90 0 060	- 0000171	0005077
wali jitean	.0010753	.0005829	1 84 0 067	0000761	.0022268
	9.800504	.126766	77.31 0.000	9.550066	10.05094
JCHKROROFCHKROROFCHKROROFCHKROROFCHKROROFCHKROROFCHKROROFCHKROROFCHKROROFCHKROROFCHKROROFCHKROROFCHKROROFCHKRO	***************************************	#0#0#C#EX#3#0#C#EX#3#0#C#EX#3#0#C#EX#3#0#C#EX#3#0#C#EX#3#0#C#EX			100000000000000000000000000000000000000

How can we get sandwich SE?

Stata

□ Use option *robust* or *cluster(...)*

SAS

proc GENMOD; statement REPEATED

SPSS

- Generalized Linear Models -> Covariance Matrix -> Robust estimator
- R or S-Plus

geeglm (geepack) -> std.err="san.se"

The 'mystery' model

Generalized Estimating Equations (marginal model approach)

GEE

- Work hard at the <u>correct modeling of the mean structure</u> (predictors) while using methods of estimation that are <u>valid in the presence of correlation</u> and <u>robust to</u> <u>potential misspecification of the detail of the covariance</u> <u>structure</u>.
- Marginal modeling = focus on the model of the marginal mean of y, with the covariance structure treated as a nuisance
- Weighs clustered data and makes estimation more efficient

Scary math again ...

$$\begin{split} Y_{ij} &= \beta_0 + \beta_1 x_{1ij} + \beta_2 x_{2ij} + \varepsilon_{ij} \\ \varepsilon_{ij} &\sim N(0, \sigma^2) \end{split}$$

Independent observations

Independence working correlation matrix (equivalent to 'common' regression)

$$\sigma^{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Yep ... one more fright ...

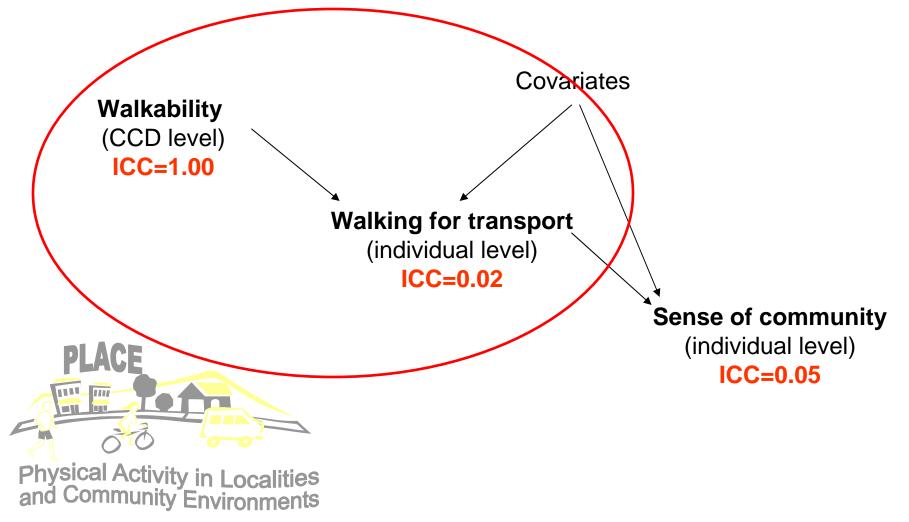
Correlated observations

Exchangeable WCM (no logical ordering for observations within a cluster)

Other WCM: -Unstructured -Auto-regressive -Fixed -M-dependent

 $\sigma^2 egin{pmatrix} 1 &
ho &
ho \
ho & 1 &
ho \
ho &
ho & 1 \end{pmatrix}$

Modeling multilevel data: Generalized estimating equations (with and without sandwich; Huber-White estimators)


Advantages

- Relatively easy to use
- Give marginal estimates of effects: gives estimates that correspond to comparing two observations randomly selected from the population (without matching on clusters)
- □ Public health significance

Disadvantages

- □ Widely unbalanced clusters create problems
- Cannot simultaneously estimate predictors' effects and outcome variance attributable to different levels of variation (area and individual)
- Cannot get estimates of variability in effects (standard deviations of slopes)
- □ Cannot be applied to data with more than 2 levels of variation

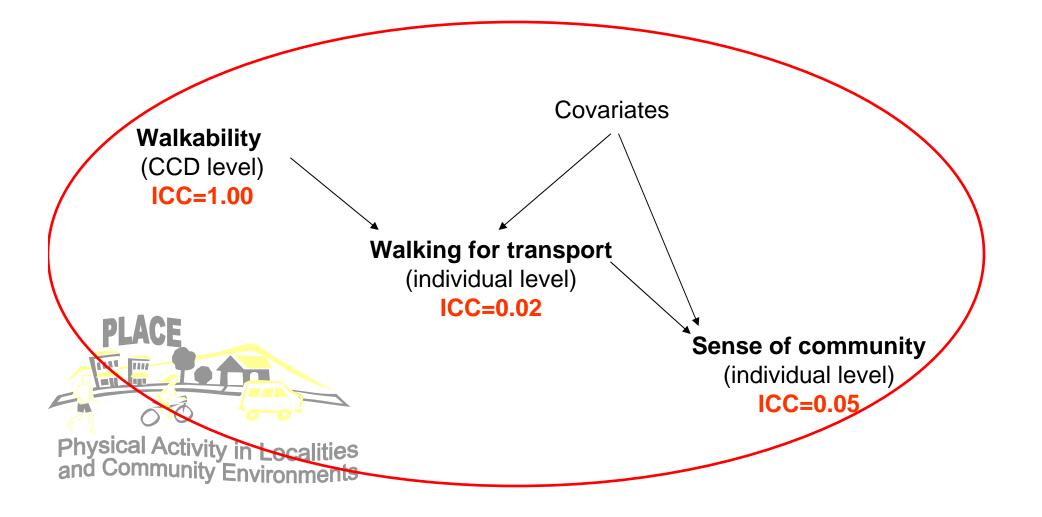
Generalized estimating equations (with and without sandwich; Huber-White estimators)

Generalized estimating equations (with and without sandwich; Huber-White estimators)

- Single-level regression with dummy variables? Why not?
- Single-level regression with sandwich estimators? Why not?
- Do we need to model individual and contextual effects of walkability?
- What working correlation matrix shall we use?
- Can we use sandwich estimators of SE?
- What about the distribution of the outcome variable? Is it skewed or normally distributed? (GLM handout)
- What about the shape of the relationship between the predictor and the outcome? (GLM handout) PLACE

Physical Activity in Localities and Community Environments

Generalized estimating equations (with and without sandwich; Huber-White estimators)


Single-level with robust SE

(Std. Err. adjusted for 154 clusters in ccd)									
walktr1860	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]			
walkability2 aa_age _cons	2.708121 1.248108 101.628	1.035585 .4084961 26.14484	2.62 3.06 3.89	0.009 0.002 0.000	.6784127 .4474699 50.38501	4.73783 2.048745 152.8709			

GEE with robust SE

	(Std. Err. adjusted for clustering on ccd)								
walktr1860	Coef.	Semi-robust Std. Err.	z	P> z	[95% Conf.	Interval]			
walkability2 aa_age _cons	2.774389 1.25721 100.6298	.9787022 .517342 30.76888	2.83 2.43 3.27	0.005 0.015 0.001	.8501676 .2432384 40.32388	4.69261 2.271182 160.9357			

Generalized estimating equations (with and without sandwich; Huber-White estimators)

Generalized estimating equations (with and without sandwich; Huber-White estimators)

- Do we need to model individual and contextual effects of walking?
- What working correlation matrix shall we use?
- What about the distribution of the outcome variable? Is it skewed or normally distributed?
- What about the shape of the relationship?

Physical Activity in Localities and Community Environments

Real data:

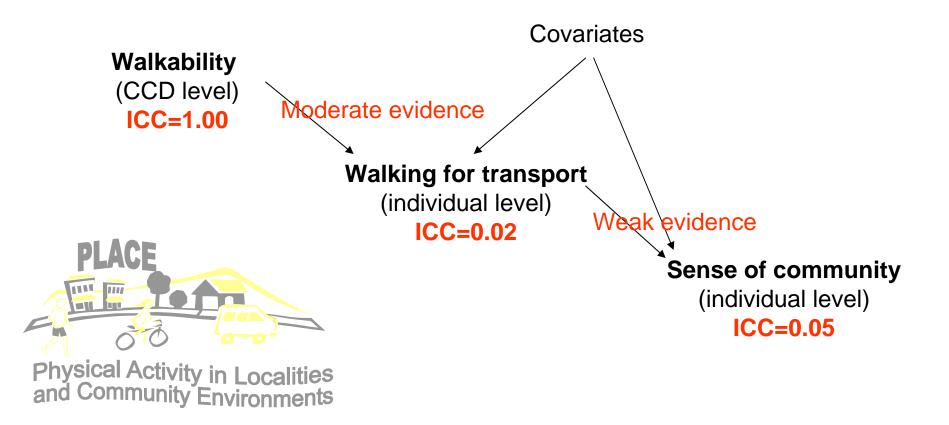
Generalized estimating equations (with and without sandwich; Huber-White estimators)

Single-level with robust SE

		(Sto	l. Err. a	djusted ⁻	for 154 cluste	rs in ccd)
sense_comm	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
walktr1860 walkability2 aa_age _cons	.0002724 .0179439 .0295024 8.324257	.0001483 .0069821 .0033922 .2077744	1.84 2.57 8.70 40.06	0.066 0.010 0.000 0.000	0000183 .0042593 .0228538 7.917026	.0005631 .0316285 .0361511 8.731487

GEE with robust SE

		(St	d. Err.	adjusted	d for clusteri	ng on ccd)
sense_comm	Coef.	Semi-robust Std. Err.	z	P> Z	[95% Conf.	Interval]
walktr1860 walkability2 aa_age _cons	.0002595 .0188467 .0288185 8.332918	.0001485 .0069958 .0034346 .2110034	1.75 2.69 8.39 39.49	0.080 0.007 0.000 0.000	0000315 .0051352 .0220868 7.919359	.0005506 .0325581 .0355502 8.746477


Does walking for transport mediate the relationship between walkability and sense of community?

Weak evidence ...

Real data:

Generalized estimating equations (with and without sandwich; Huber-White estimators)

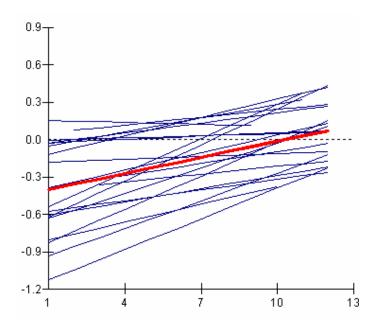
Software for GEE

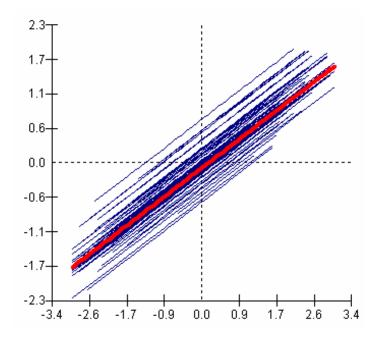
SPSS

□ Generalized Linear Models -> GEE

- Stata
 - □ xtgee
- SAS
 - □ proc GENMOD; statement REPEATED
- R or S-Plus

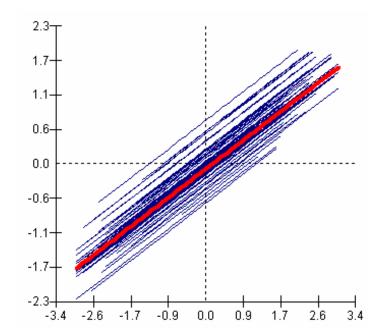
□ gee (Vincent Carey)


Main components of GEE syntax

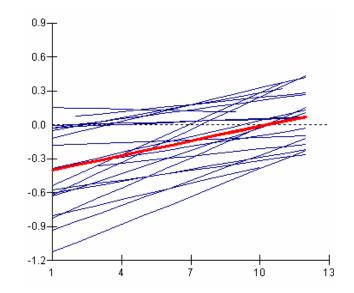

- Outcome and explanatory variables
- Variance function (normal; gamma; binomial, negative binomial ...)
- Link function (identity, logarithmic, logit, inverse, power, probit ...)
- Specify the cluster variable
- Identify the working correlation matrix
- Model-based or empirical (robust) standard errors

xtgee walktr1860 walkability2 aa_age, i(ccd) f(gamma) link(identity) corr(exch) robust

GEEE ... and what about multilevel linear models?


- ... also called hierarchical linear models
- ... OR linear mixed models
- ... OR generalized linear mixed models

... MLM / GLMM / HLM ... whatever ...


Random intercept model

$$\begin{aligned} Walking_{ij} &= \beta_{0j}cons + \beta_1(age)_{ij} + \beta_2(walkability)_j \\ \beta_{0j} &= \beta_0 + u_{0j} + e_{0ij} \\ u_{0j} &\sim N(0, \sigma_{u0}^2) \quad e_{0ij} \sim N(0, \sigma_{e0}^2) \end{aligned}$$

... MLM / GLMM / HLM ... whatever ...

Random intercept and random slope model

 $Sense_Community_{ij} = \beta_{0ij}cons + \beta_1(age)_{ij} + \beta_2(walkability)_j + \beta_{3j}(walking)_{ij}$ $\beta_{0j} = \beta_0 + u_{0j} + e_{0ij}$ $\beta_{3j} = \beta_3 + u_{1j}$ $u_{0j} \sim N(0, \sigma_{u0}^2) \quad e_{0ij} \sim N(0, \sigma_{e0}^2)$ $u_{1j} \sim N(0, \sigma_{u1}^2) \quad Cov(u_{0j}, u_{1j}) = \rho \sigma_{u0} \sigma_{u1}$

GEEE ... and what about multilevel linear models?

Advantages over GEE

- □ More robust in case of missing data
- □ More robust in case of unbalanced clusters
- Can estimate variances at different levels (individual versus area)
 - How much do the effects of walking for transport on sense of community vary across CCDs?
 - What explains such variations?
- Disadvantages
 - Conditional, area-specific effects
 - □ More difficult to set up
 - Specialized software (especially for more than 3 levels of variation)

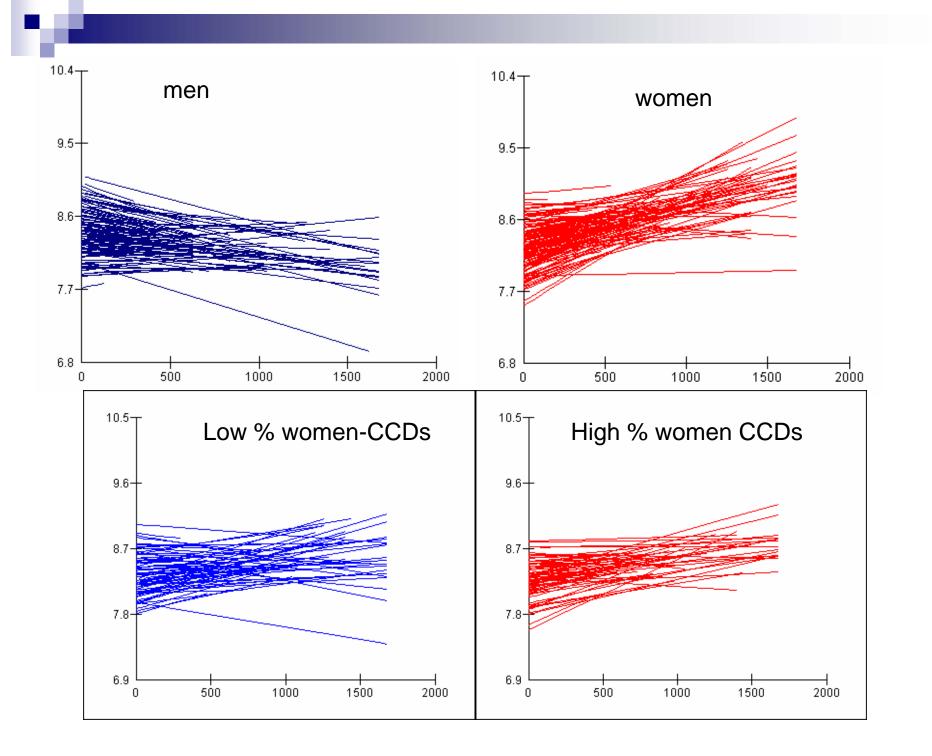
log likelihood = -15838.343								
walktr1860	Coef.	Std. Err.	z	P>[2]	[95% Conf.	Interval]		
walkability2 aa_age _Iaa_gende_1 _cons	2.784656 1.525122 -11.91044 96.04954	.9782341 .5994114 14.90564 35.66595	2.85 2.54 -0.80 2.69	0.004 0.011 0.424 0.007	8673528 .3502977 -41.12495 26.14556	4.70196 2.699947 17.30407 165.9535		
Variance at level 1 108169.12 (3359.1819) Variances and covariances of random effects								
***level 2 (ccd) var(1): 999.16976 (909.73504)								

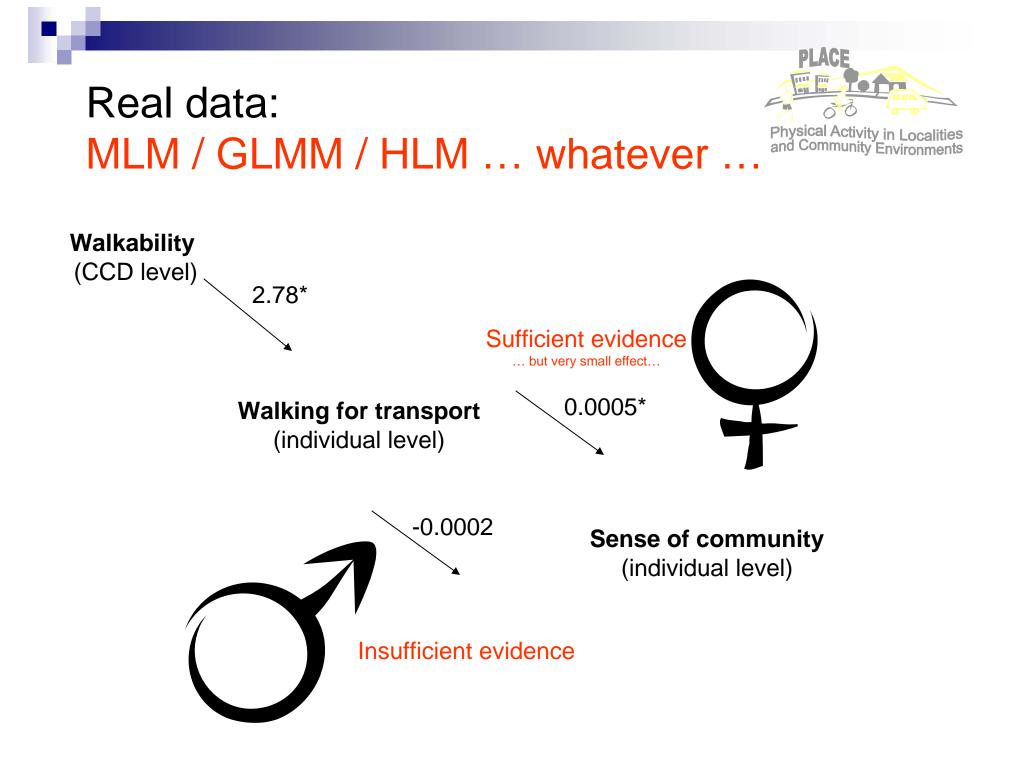
log likelihood = -4560.5175							
sense_comm	Coef.	Std. Err.	z	P>[2]	[95% Conf.	Interval]	
walktr1860 walkability2 aa_age Iaa_gende_1 cons	.000258 .0189959 .0287477 0024575 8.334155	.0001291 .0070668 .0036222 .0894361 .2263955	2.00 2.69 7.94 -0.03 36.81	0.046 0.007 0.000 0.978 0.000	4.93e-06 .0051452 .0216483 177749 7.890428	.000511 .0328467 .035847 .1728341 8.777882	
Variance at level 1 3.7862908 (.1190439) Variances and covariances of random effects							
***level 2 (ccd) var(1): .16177849 (.05232494)							

Does walking for transport mediate the relationship between walkability and sense of community?

Some evidence ...

Does walking for transport mediate the relationship between walkability and sense of community in all CCDs?


1	log likelihood	d = -4557.9158	1							
	sense_comm	Coef.	Std. Err.	Z	P> Z	[95% Conf.	Interval]			
	walktr1860 walkability2 _aa_age _Iaa_gende_1 _cons	.0002584 .0205094 .0290625 0029531 8.293181	.0001465 .0071913 .0036118 .0893543 .2289085	1.76 2.85 8.05 -0.03 36.23	0.078 0.004 0.000 0.974 0.000	0000286 .0064148 .0219835 1780843 7.844528	.0005456 .0346041 .0361414 .1721781 8.741833			
		ariance at level 1 								
	· ·	3.7317409 (.11978565) ariances and covariances of random effects								
	***level 2 (ccd)									
	<pre>var(1): .23560551 (.07392603) cov(1,2):00021753 (.00012073) cor(1,2):64751056</pre>									
<	var(2): 4.	var(2): 4.790e-07 (2.961e-07)								


CCD-level variation in slope of walking for transport: 0.000258±0.000692

What explains variations in effects of walking for transport on sense of community across CCDs?

sense_comm	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]			
_Iaa_gende_1 walktr1860 _Iaa_Xwalk~1 walkability2 aa_age _cons	1492161 0001944 .0007364 .0202918 .0293789 8.375554	.1044089 .0002221 .0002727 .0071281 .0036078 .2300588	-1.43 -0.88 2.70 2.85 8.14 36.41	0.153 0.381 0.007 0.004 0.000 0.000	3538538 0006297 .0002018 .0063209 .0223077 7.924647	.0554217 .0002409 .0012709 .0342626 .03645 8.82646			
Variance at level 1									
	3.7229165 (.11952071) Variances and covariances of random effects								
***level 2 (ccd)									
	var(1): .23594917 (.07346059) cov(1,2):00022435 (.00011921) cor(1,2):68126111								
var(2): 4.596e-07 (2.917e-07)									

Software for MLM

SPSS

□ (Linear) Mixed Models

Stata

xtreg; xtlogit; xtETC; gllamm (Generalized Linear Latent and Mixed Models)

SAS

proc MIXED

R or S-Plus

- □ nlme (non-linear mixed effects)
- MLwiN (University of Bristol, UK)

Conclusions

- When shall we use single-level regression with dummy variables representing clusters?
- When shall we use GEE?
- When can we simply use sandwich estimators of SE?
- When would we prefer the multilevel linear models?

