Moving beyond continuous outcomes: Multilevel modeling of binary, ordinal, and count outcomes

> Scott C. Roesch, Ph.D. Department of Psychology San Diego State University scroesch@sciences.sdsu.edu

Overview

- Brief review of multilevel regression modeling (MRM) with continuous outcomes
- Understanding Proportions (Probabilities), Odds, Odds Ratios
- MRM with
 - binary (multinomial) outcomes
 - ordinal outcomes
 - count outcomes
- Final Practical Issues
- Selected References

What is multilevel modeling?

- Many synonyms
 - Hierarchical linear modeling
 - Random-effects modeling
 - Mixed-effects modeling
 - Variance components modeling
- Statistical model that allows specifying and estimating relationships between variables
 that have been observed at different levels of a hierarchical (or nested or clustered) data structure

Why MRM?

- Nested data structures are everywhere
 - Time periods (or repeated observations) nested within individuals (2-level structure)

Why MRM?

 Nested data structures are everywhere
 Individuals nested within neighborhoods (2-level structure)

The logic of MRM extended to clusters

- Assume that we have individuals (level-1) nested in neighborhoods (level-2)
 - 1 level-1 continuous DV (physical activity [PA] Y_{ii})
 - 1 level-1 IV (SES; X_{ij})
 - $PA_{ij} = \beta_0 + \beta_1 SES_{ij} + r_{ij}$,

- Assume that we have grand mean-centered the level-1 IV

- β_0 is β_1 is

 var(r_{ij}) = σ², how different people are from their own neighborhood's regression line

6

Regression in a single neighborhood

 $PA' = 10.81 + 2.51(SES) + r_1$

7

2 neighborhoods

- Neighborhood 1
 - $Y_i = \beta_{01} + \beta_{11} X_i + r_i$
- Neighborhood 2

 $- Y_i = \beta_{02} + \beta_{12} X_i + r_i$

- So each neighborhood has its own intercept and slope
 - this in effect serves as further "data"
 - distribution of intercepts and slopes can be summarized with
 - the mean

the variance relative to the mean

MRM Model

- Each level is represented by its own submodel
 level-1 DV = PA (Y_{ii})
 - level-1 IV = individual's SES (X_{ij})
 - level-2 IV = neighborhood SES (Z_j)
- Equations for group structured data - Lowest (individual) level (level-1): • $Y_{ij} = \beta_{0j} + \beta_{1j}X_{ij} + r_{ij}$ - Upper (group) level (level-2): • $\beta_{0j} = \gamma_{00} + \gamma_{01}Z_j + u_{0j}$ • $\beta_{1j} = \gamma_{10} + \gamma_{11}Z_j + u_{1j}$

The intercept-only (or empty) model

- Level-1 equation: $Y_{ij} = \beta_{0j} + r_{ij}$
 - β_{0j} = mean PA score for each neighborhood
 - r_{ij} = variance (σ^2) of each individual's PA score around the mean PA for their respective neighborhood
- level-2 equation: β_{0j}= γ₀₀ + u_{0j}
 γ₀₀ = mean PA scores across neighborhood
 i.e., grand mean
 u_{0j} = variance (τ₀₀) of each neighborhood mean around the grand mean

Intraclass correlation coefficient (variance partition coefficient) =

<u>variance between groups</u> variance between + variance within

•
$$\rho = \tau_{00} / (\tau_{00} + \sigma^2) =$$

•

- proportion of variance in PA <u>between</u> neighborhoods

- e.g., p = .27 means that 27% of the variability in PA scores is between neighborhoods
- Also refers to the <u>intracluster correlation</u> between two level-1 units in the same level-2 unit

Moving beyond continuous outcomes

Categorical observed variables

	Physical Activity and Gender			
	n	No PA	Yes PA	Prob. PA
Female	1000	800	200	.20
Male	1000	500	500	.50
Total	2000	1300	700	

Prob. or Risk (Yes PA) = 700/2000 = .35
Prob. differs by gender
Risk Ratio or Relative Risk = .50/.20 = 2.50
Males are 2.50 are more likely to engage in PA than females

Moving beyond continuous outcomes• Odds and Odds RatiosPhysical Activity and Gender
nnPAProp.Odds(Prop./1-Prop.)Female 1000200.20Male1000500.50Odds Ratio (OR) = 1.00/.25 = 4

•The odds of engaging in PA (vs. not) is 4 times greater for Males (vs. Females)

McNutt et al. (2003). Estimating relative risk in cohort studies and clinical trials of common outcomes. <u>American Journal of Epidemiology</u>, 157, 940-943.

Osborne, J.W. (2006). Bringing balance and technical accuracy to reporting odds ratios and the results of logistic regression analyses. <u>Practical Assessment Research & Evaluation, 11</u>, 1-6. Kleinman, L.C., & Norton, E.C. (2009). What's the risk? A simple approach for estimating adjusted risk measures from nonlinear models including logistic regression. <u>Health Services Research</u>, 13 <u>44</u>, 288-302.

Moving beyond continuous outcomes

- Generalized linear (mixed) models ([hierarchical] generalized linear models)
 - Used when...
 - Outcomes violate OLS assumptions
 - -Normality and homoscedasticity of residuals
 - Predicted outcome values will be "out of range"
 - Relationship of interest is nonlinear
- How to address these problems?
 - The link function: the log (natural)

The link function

- Binary case: Logistic regression model
 - Predicting the probability of group membership for an underlying variable (slide 16)
 - prediction not constant for full range of X
 - Log $[P(y_i = 1) / 1 P(y_i = 1)] = B_0 + B_i X_{i...}$
 - Logit [log odds] function
 - Model is linear for logits (not probabilities)
 - can convert back to probabilities by

• Predicted Prob. = $1 / [1 + e^{-(BO + B1X1)}]$

Probability Curve (Sigmoid Curve)

- Log $[P(y_i = 1) / 1 P(y_i = 1)] = -0.60 + .39(E)$
 - Regression coefficients interpreted as in OLS
 - Problem, the outcome is a logit value
 - Exponentiate B to get OR: exp(B) = e^B = 2.72^{.39}
 exp(.39) = 1.48 = OR
 - What does that mean? The case of PA
 - odds of engaging in PA (vs. not) are 1.48 greater for a 1-unit increase in E
 - <u>OR multiplier</u>: 2-unit increase E
 (1.48*1.48) = 2.19 odds of engaging in PA

MRM: Logistic Regression Model

- Outcome of interest: PA (1=yes, 0=no)
- Assume individuals nested within neighborhoods
 Regression equation: Logit_{ij} = X_iβ
- Testing the intercept-only model
 - Allows us to gauge variation in PA across neighborhoods
 - Level-1: Logit_{ij} = β_{0j} , log-odds of PA in the jth neigh.
 - Level-2: $\beta_{0j} = \gamma_{00} + u_{0j}$
 - r_{ij} is missing from the level-1 equation

MRM: Logistic Regression Model

- Why r_{ij} is missing from the level-1 equation

- Assume an underlying latent variable for PA
 error structure must be fixed
- variance of r_{ij} is assumed to have a standard logistic distribution (Mean = 0, variance = $\pi^2/3$)
 - -see Snijders and Bosker (1999)
 - other methods: Goldstein et al. (2002). Partitioning variation in multilevel models. <u>Understanding Statistics</u>, 1, 223-231.
- Let's estimate the intercept-only model using HLM and identify parameters of interest

HLM

WHLM: h	Im2 MDM File: binary.mdm		
File Basic Setti	ings Other Settings Run Analysis Help		
File Basic Setti Outcome >> Level-1 << Level-2 INTRCPT1 GENDER OWN_RENT PA	Im2 MDM File: binary.mdm ings Other Settings Run Analysis Help LEVEL 1 MODEL (bold: group-mean centering; bold italic: gran Prob(PA=1 β) = φ Log[φ /(1 - φ)] = η η = β_0 LEVEL 2 MODEL (bold italic: grand-mean centering) $\beta_0 = \gamma_{00} + u_0$	and-mean centering)	
			Mixed
🛃 start	🙋 Microsoft PowerP 🛛 🚟 WHLM: hlm2 MD		2:51 PM

- Level-2 equation: $\beta_{0j} = \gamma_{00} + u_{0j}$ - $\gamma_{00} = -1.73$, mean logit across neighborhoods
 - τ_{00} (variance of u_{0j}) = 1.32
 - Variance between neighborhoods around the grand mean logit (i.e., -1.73, p < .001)
 - Converting γ_{00} = -1.73 to a probability
 - Prob. (PA=1) = 1 / (1 + exp[-logit value])
 - Prob. (PA=*Yes*) = 1 / (1 + exp[1.73]) = .15
 - Neighborhood-wide PA rate (Prob.)

- Calculate a confidence interval (CI) to further probe neighborhood variability
 - 95% CI = mean logit ± (1.96 * √Var. logit)
 - -95% CI = $-1.73 \pm (1.96 * \sqrt{1.32})$
 - 95% CI = -3.98 to 0.52
 - Convert these to probabilities as previous
 95% CI = .02 to .63

- Calculate intraclass correlation coefficient
- $\rho = \tau_{00} / (\tau_{00} + \sigma^2) = 1.32 / (1.32 + \pi^2 / 3) = .29$
 - 29% of the variability in PA logit values is between neighborhoods
 - Other indices include median OR
 - See Merlo and Larsen in *Journal of Epidemiology* and Community Health (2003,2005,2006)

The conditional model

- Modeling variability
 - Level-1 predictors
 - Gender (O=female, 1=male)
 - Home Ownership (0=rent, 1=own)
 - Level-2 predictor
 - Neighborhood SES (grand-mean centered)
- Level-1 equation: Logit_{ij}= β_{0j} + β_{1j} Gender_{ij}+ β_{2j} Own_{ij}
- Level-2 equations:
 - $\beta_{0j} = \gamma_{00} + \gamma_{01} SES_j + u_{0j}$
 - $\beta_{1j} = \gamma_{10}$ and $\beta_{2j} = \gamma_{20}$

HLM

	WHLM: h	m2 MDM File: binar	ry.mdm				F	×
File	Basic Settir	ngs Other Settings Run Ana	alysis Help					
0	Outcome	LEVEL 1 MODEL (bold: group-	-mean centering; bold italic: grand-i	mean centering)				^
	Level-1	$Prob(PA=1 \beta) = \varphi$						=
INTE	RCPT2	$Log[\phi/(1 - \phi)] = \eta$						
MS	ESC	$\eta = \beta_0 + \beta_1 (\text{GENDER}) + \beta_1$	₂ (OWN_RENT)					
		LEVEL 2 MODEL (bold italic: g	rand-mean centering)					
		$\beta_0 = \gamma_{00} + \gamma_{01} (MSESC)$) + u ₀					
		$\beta_1 = \gamma_{10} + u_1$						
		$\beta_2 = \gamma_{20} + u_2$						
						1	Mixed	~
	start	Microsoft PowerP	👑 WHLM: hlm2 MD	🛄 binary_level1.sav	MPlus_binary.sav	< 🛂 <	4:10 PM	

	Model Resu	Results		
Effect	Coefficient	OR	p-value	
Intercept γ_{00}	-1.75			
SES γ_{01}	-0.28	0.75	.126	
Gender γ_{10}	0.45	1.56	<.001	
<u>Own γ_{20}</u>	-0.54	0.58	<.001	

Males and Renters more likely to engage in PA
Interpreting ORs

Gender: The odds of engaging in PA (vs. not) is 1.56 times greater for males (vs. females)
Own: The odds of engaging in PA (vs. not) is 0.56 times less likely for homeowners (vs. renters)

MRM: Logistic Regression Model

- Converting to predicted probabilities to aid interpretation
 - We have a regression equation:

Logit_{ij} = -1.75 + .45(Gender) - .54(Own) - .28(SES)...

- Substitute predictor values in equation
 - For male, homeowner, average neighborhood SES
 - Prob. (PA=1|x) = 1 / (1 + exp[-logit value])

• Prob. (PA=1|x) = 1 / (1 + exp[1.84]) = .14

MRM: Logistic Regression Model

- Converting to predicted probabilities to aid interpretation
 - We have a regression equation:

Logit_{ij} = -1.75 + .45(Gender) - .54(Own) - .28(SES)...

- Substitute predictor values in equation
 - For female, homeowner, average neighborhood SES
 - Prob. (PA=1|x) = 1 / (1 + exp[-logit value])

• Prob. (PA=1|x) = 1 / (1 + exp[2.29]) = .09

Moving on: The Multinomial (Nominal) Case

Similar to binary case in many ways

- Multinomial logit is the link function, but now we have multiple equations
- Assume 3 categories for the outcome
 - Log[P(y_i = category 1) / P(y_i = reference)] = $X_i\beta$
 - Log[P(y_i = category 2)/ P(y_i = reference)] = $X_i\beta$
 - Thus, our outcome at level-1 will be the logodds of falling into category 1 (relative to the reference category)
 - And similarly for category 2

MRM: Multinomial Logistic Regression Model

- Outcome of interest: intentions to engage in PA
 (1=yes, 2=not sure, 3=no)
 - no category serves as the reference group
- Assume individuals nested within neighborhoods
- Testing the intercept only model
 - Level-1 Equations
 - Log[$P(y_i = yes) / P(y_i = no)$] = $\beta_{0j(1)}$
 - Log[P($y_i = not sure$) / P($y_i = no$)] = $\beta_{0j(2)}$

MRM: Multinomial Logistic Regression Model

- Level-2 Equations
 - $B_{Oj(1)} = \gamma_{OO(1)} + u_{Oj(1)}$
 - $B_{0j(2)} = \gamma_{00(2)} + u_{0j(2)}$

Estimate the model in HLM

HLM

🛎 WHLM: hl	m2 MDM File: multi	nomial.mdm				_ B 🗙
File Basic Settin	gs Other Settings Run Anal;	ysis Help				
Image: WFILM: Display="2">Image: Setting Outcome >> Level-1 << Level-2 INTRCPT1 PA SES_IND	m 2 MDM File: multi gs Other Settings Run Anal- Prob[PA(1)=1 β] = P(1) Prob[PA(2)=1 β] = P(2) Prob[PA(3)=1 β] = P(3) = 1 - Log[P(1)/P(3)] = $\beta_{0(1)}$ Log[P(2)/P(3)] = $\beta_{0(2)}$ LEVEL 2 MODEL (bold fails: gra For category 1 $\beta_{0(1)} = \gamma_{00(1)} + u_{0(1)}$ For category 2 $\beta_{0(2)} = \gamma_{00(2)} + u_{0(2)}$	nomination dim ysis Help hean centering; bold italic: grand P(1) - P(2) and-mean centering)	d-mean centering)			
🛃 start	ALR2010_MLR	Calculator	🚟 WHLM: hlm2 MD		< <mark>U</mark> 3	Mixed ⊻ ♦ M 1:56 PM

- Level-2 equation 1: $B_{0j(1)} = \gamma_{00(1)} + u_{0j(1)}$
 - $-\gamma_{00(1)} = 0.91$
 - Mean logit for saying yes to PA is greater than saying no to PA
 - T₀₀₍₁₎ (variance of u_{0j(1)}) = 0.20 (p = .002)
 Suggests statistically significant variation in logit values

- Level-2 equation 2: $B_{0j(2)} = \gamma_{00(2)} + u_{0j(2)}$
 - $-\gamma_{00(2)} = -0.02$

 Mean logit for saying not sure to PA is similar to saying no to PA

T₀₀₍₂₎ (variance of u_{0j(2)}) = 0.04 (p = .302)
Suggests NO statistically significant variation in logit values between neighborhoods
Remove random effect u_{0j(2)}
Low likelihood that level-2 predictors will work

Calculate p

• $\rho_{(1)} = \tau_{00(1)} / (\tau_{00(1)} + \sigma^2) = 0.20 / (0.20 + \pi^2 / 3) = .06$

- 6% of the variability in PA logit values is between neighborhoods
- $\rho_{(2)} = \tau_{00(2)} / (\tau_{00(2)} + \sigma^2) = 0.04 / (0.04 + \pi^2 / 3) = .01$
 - 1% of the variability in PA logit values is between neighborhoods

The conditional model

- Level-1 predictors
 - SES (grand mean centered)
- Level-2 predictor
 - Neighborhood control over crime (grand-mean centered)
- Same equations for both logit values
 - Level-1 equation: Logit_{ij}= β_{0j} + β_{1j} SES_{ij}
 - Level-2 equations:
 - $\beta_{0j} = \gamma_{00} + \gamma_{01}Control_j + u_{0j}$
 - $\beta_{1j} = \gamma_{10}$

HLM

🛗 WHLM: hlm2 MD	DM File: multinomial.mdm	<u>_ 8 ×</u>
File Basic Settings	Other Settings Run Analysis Help	
WHLM: hm2 MD File Basic Settings Outcome Level-1 >> Level-2 <	OM: Seturg Way Markaysis Hep LEVEL 1 MODEL (bold group-nean certering) bold talis: grand-mean certering) Prob[PAC]=1[b] = P(2) Prob[PAC]=1[b] = P(2) Prob[PAC]=1[b] = P(3) = 1. P(1) · P(2) LogP(1/P(2)) = $\beta_{0(2)} + \beta_{1(2)}(SES_MO)$ LogP(1/P(2)) = $\beta_{0(2)} + \beta_{1(2)}(SES_MO)$ LogP(1/P(2)) = $\beta_{0(2)} + \beta_{1(2)}(SES_MO)$ LevL 2 MODEL (bold talic: grand-mean certering) For category 1 $\beta_{0(2)} = \gamma_{00(2)} + \gamma_{01(2)}(CONTROL) + u_{0(2)}$ $\beta_{1(2)} = \gamma_{10(2)} + \gamma_{10(2)}(CONTROL) + u_{0(2)}$ $\beta_{1(2)} = \gamma_{10(2)} + u_{1(2)}$	
Start @ Mirro	soft PowerPoint - [Mixed V

Model Results: Comparison 1

	Regression	Adjusted	
Effect	Coefficient	OR	p-value
Intercept $\gamma_{00(1)}$	1.08		
Control $\gamma_{01(1)}$	2.10	8.13	.001
<u>SES γ₁₀₍₁₎</u>	0.40	1.49	.001_

•High control over crime neighborhoods and individuals with higher SES more likely to say *yes* (relative to *no*) to engaging in PA

MRM: Multinomial Logistic Regression Model

 Converting to predicted probabilities to aid interpretation

Logit_{ij} = 1.08 + 2.10(Control) + .40(SES)...

Substitute predictor values in equation
For individuals with average neighborhood control & individual SES

Prob. (PA=1|x) = 1 / (1 + exp[-1.08]) = .75
vs. 1 SD above the mean for control
Prob. (PA=1|x) = 1 / (1 + exp[-3.08]) = .95

Model Results: Comparison 2

	Regression	Adjusted	
Effect	Coefficient	OR	p-value
Intercept $\gamma_{00(2)}$	0.09		
Control $\gamma_{01(2)}$	0.04	1.04	.773
<u>SES $\gamma_{10(2)}$</u>	0.03	1.03	.830

 Predictors do not differentiate those who are unsure of intending to engage in PA and those who do not intend to engage in PA

Moving on: The Ordinal Case

- Similar to multinomial case in many ways...
 - ... but preserves the *continuum* of the data
 - e.g., Likert items
 - e.g., (1=*never*, *2=sometimes*, 3=often)
 - Statistical model is the <u>cumulative</u> probability or logit model
 - Take our outcome from the previous analysis

- Do you intend to engage in PA?

• 1= yes, 2=not sure, 3= no

 Each of these outcomes can take on a probability and cumulative probability value

Moving on: The Ordinal Case

- To capture the ordered categorical nature of the data we consider cumulative logits (Clog)
- Assume our 3 ordered categories for the outcome
 - $CLog[P(y_i = yes) / P(y_i = not sure \& no)] = X_i\beta$
 - $CLog[P(y_i = yes \& not sure) / P(no)] = X_i\beta$
 - Our outcomes at level-1 will be
 - the log-odds of falling into yes vs. the two higher categories
 - the log-odds of falling into yes & not sure
 vs. no

Moving on: The Ordinal Case

- Proportional Odds Model
 - Assumes that the effect of the predictors on the cumulative logits is identical
- Non-Proportional Odds Model relaxes this assumption
 - Similar to a multinomial case
- We will assume Proportional Odds in the current example
- Level-2 variance assessment the same as previous

MRM: Ordinal Regression Model

- Outcome of interest: intentions to engage in PA
 (1=yes, 2=not sure, 3=no)
- Assume individuals nested within neighborhoods
- Testing a conditional model
 - Level-1 predictors
 - SES (grand mean centered)
 - Level-2 predictor
 - Neighborhood control over crime (grand-mean centered)

The conditional model

- Same equations for both cumulative logit equations
 Level-1 equation: CLog_{ij}= β_{0j}+ β_{1j}SES_{ij}
 - Level-2 equation:
 - $\beta_{0j} = \gamma_{00} + \gamma_{01} Control_j + u_{0j}$
 - $\beta_{1j} = \gamma_{10}$
- Thresholds
 - Assumes a latent continuous variable underlies the outcome
 - These "cut-points" are intercept terms for each CLog equation

🚟 WHLM: hlm2 Mi	DM File: multinomial.mdm	
File Basic Settings	Other Settings Run Analysis Help	
	LEVEL 1 MODEL (bold: group-mean centering; bold italic: grand-mean centering)	^
Level-2	$Prob[R \le 1 \beta] = P'(1) = P(1)$	
INTRCPT1	$Prob[R \le 2 \beta] = P'(2) = P(1) + P(2)$	
PA SES IND	Prob[R <= 3 β] = 1.0	
020_00	$P(1) = Prob[PA(1)=1 \beta]$	
	$P(2) = Prob[PA(2)=1 \beta]$	
	$Log[P'(1)/(1 - P'(1)] = \beta_0 + \beta_1(SES_IND)$	
	$Log[P'(2)/(1 - P'(2)] = \beta_0 + \beta_1 (SES_MD) + \delta_{(2)}$	
	LEVEL 2 MODEL (bold italic: grand-mean centering)	
	$\beta_0 = \gamma_{00} + \gamma_{01}(CONTROL) + u_0$	
	$\beta_1 = \gamma_{10} + \omega_1$	
	δ ₍₂₎	
		Mixed -
👌 Start 🛛 🔞 Micro	soft PowerPoint - [
		40

Model Results			
Fffort	Regression Coefficient	Adjusted	n-value
Control γ_{01}	1.54	4.67	.001
<u>SES γ₁₀</u>	0.35	1.42	<.001

High control over crime neighborhoods and individuals (within neighborhoods) with higher SES more likely to say yes (relative to not sure & no) to PA
And for yes and not sure relative to no

 Values from the regression equation can be converted to predicted probabilities as before

MRM: Ordinal Regression Model

- Other ordered logit models
 - Stage/Continuation Ratio Approach
 - "yes" vs. "not sure & no"
 - "not sure" vs. "no"
 - Adjacent Category Approach
 - "yes" vs. "not sure"
 - "not sure" vs. "no"

Fullerton, A.S. (2009). A conceptual framework for ordered logistic regression models. *Sociological Methods & Research, 38*, 306-347.
Liu, I., & Agresti, A. (2005). The analysis of ordered categorical data: An overview and a survey of recent developments. Test, 14, 1-73.

Moving on: Poisson MRM

- Seeks to model count variables
 - Nonnegative integers
 - Often have many zeros
 - Positively skewed distribution
 - # days engaged in PA over a 30 day period
 - Average number of days engaged in PA over this period (*I*; rate parameter)
 - The natural log (In) of the target "event" is the link function
 - $\ln(\Lambda) = B_0 + B_1(Extraversion[E])...$,

- where *k*'=predicted count variable

Poisson Distribution

50

- In(PA') = 1.32 + .35(E)
 Like OLS regression interpreting In(PA')
 - Like logistic regression, exponentiating the equation/terms is helpful
 - $e^{\ln(PA')} = e^{(1.32 + .35[E])}$
 - $e^{\ln(PA')} = PA' \rightarrow PA' = e^{(1.32 + .35[E])}$

- outcome is now in the original metric

Working on the right-side

 $e^{(1.32 + .35[E])} = e^{1.32}e^{.35(E)}$

- $PA' = e^{1.32}e^{.35(E)}$
 - $-\exp(B_{o}) = \exp(1.32) = 3.75$
 - Predicted days of PA for a person of average
 E (assume E was grand-mean centered)
 - $-\exp(B_1) = \exp(.35) = 1.42$
 - Event (or Rate or Incidence) Ratio

 Predicted <u>multiplicative</u> effect of a 1-unit change in E on days of PA

e.g., a 4 (relative to a 3) on E will engage
 in PA 1.42 times more

- Let's take a further look at this issue
 PA' = e^{BO + B1(E)...}
 - $PA' = e^{1.32 + .35(E)}$, E is grand-mean centered
 - Substitute values for E to get predicted number of events (days of PA)
 e.g., PA' = e^{1.32 + .35(4)} = 15.21
 e.g., PA' = e^{1.32 + .35(3)} = 10.71
 10.71 * 1.42 = 15.21

The conditional model

- Modeling variability
 - Level-1 predictors
 - Stress (continuous measure)
 - Level-2 predictor
 - Gender (O=female, 1=male)
- Level-1 equation: ln(PA)_{ij}= β_{0j}+ β_{1j}Stress
- Level-2 equations:
 - $\beta_{0j} = \gamma_{00} + \gamma_{01} Gender_j + u_{0j}$
 - $\beta_{1j} = \gamma_{10}$

HLM

👑 WHLM: hlm2 Mi	DM File: poisson.mdm	
File Basic Settings	Other Settings Run Analysis Help	
Outcome	LEVEL 1 MODEL (bold: group-mean centering; bold italic: grand-mean centering)	_
Level-1	$E(PA \beta) = \lambda$	
>> Level-2 <<		
INTRCPT2 GENDER		
GENDER	$\eta = \beta_0 + \beta_1(STRESS)$	
	LEVEL 2 MODEL (bold italic: grand-mean centering)	
	$\beta_{0} = \gamma_{00} + \gamma_{01} (\text{GENDER}) + u_{0}$	
	$\beta_{1} = \mathbf{v}_{12} + \mu_{12}$	
		Mixed
Auchauk Const		
Start 10 Micro		10:37 AM

Model Results				
Effect	Regression C oefficient	exp(B)	p-value	
Intercept y ₀₀	0.46			
Gender γ_{01}	1.43	4.18	.013	
Stress γ_{10}	-1.17	0.31	.001	

•Males and individuals with lower stress are more likely to engage in PA

•Exponentiating regression coefficients gives us event (incident or rate) ratio

Model Results

- Further Interpretation
 - <u>Gender</u>: Males on average engage in PA 4.18 times more than females, holding stress constant
 - PA' (male) = $e^{0.46 + 1.43(1) 1.17(0)} = 6.63$
 - PA' (female) = $e^{0.46 + 1.43(0) 1.17(0)} = 1.58$
 - <u>The Multiplier</u> = 1.58 * 4.18 = 6.63
 - <u>Stress</u>: 1-unit change in stress associated with a .31 times change in PA, holding gender constant
 - PA' (stress=1) = $e^{0.46 + 1.43(0)} 1.17(1) = 0.49$
 - PA' (stress=0) = $e^{0.46 + 1.43(0) 1.17(0)} = 1.58$

Poisson MRM

- Assessing variability •
 - Depends on the program used
 - Programs like HLM and Mplus do NOT estimate level-1 variance
 - Options
 - Assume a normal distribution for level-1 residuals
 - Use a simulation method
 - Assume a level-1 Poisson distribution with a specific mean/variance
 - Use statistical significance test and CI for level-2 variability

Poisson MRM

- Constant exposure vs. Variable exposure

- Counts (Events) per unit time or population size is the outcome (offset)
 - -becomes a rate
- Overdispersion
 - Variance > Mean
 - Largely influences standard errors
 - Use either
 - Overdispersed Poisson Model (Φ)

- Negative Binomial (Φ plus other Poissons)

MRM: Zero-Inflated Poisson (ZIP) Regression Model

- Mixture of logistic and Poisson regression models
 Used when
 - there are "excess Os" for the Poisson
 - there are two ways that Os can be generated
 <u>structural</u>: those that will never engage in PA
 - <u>regular Poisson Os</u>: those that will engage, but did not in the time-interval
 - Issue becomes finding predictors that differentiates these two groups

MRM: Zero-Inflated Poisson Regression Model

 ZIP models explore the prediction of latent groups ("always 0 group" vs. "not always 0 group")
 Logit is used to model this latent binary outcome

"zero" class (coded 1)

Part II: Poisson model

- Regular Poisson without the excess Os

Can have different predictors for each equation

MPlus

Mplu 🔜	lus - [zip_conditional.inp]	
File	e Edit View Mplus Graph Window Help	
TIT	TLE: Multilevel ZIP regression	
דות	T) ·	
-	FILE is C:\Scott\Presentations\ALR2010\MPlus_poisson.dat;	
	FORMAT is FREE;	
VAF	RIABLE:	
	NAMES are id gender stress prior_pa pa;	
	NSFWADIARIES ADE na gender stress prior na.	
	oslyakiabilo aki pa genaci bolebo pilor_pa,	
	MISSING ARE ALL (-999);	
	COUNT IS pa (i);	
	WITHIN = stress prior_pa;	
	BETWEEN = gender;	
	CENTERING = CRANDWEAN (Strong)	
	CENTERING - GRANDHEAN (SCIESS),	
	CLUSTER is id;	
ANA	ALVSIS:	
	TYPE = TWOLEVEL RANDOM;	
MOL	DEL:	
	%UITHIN%	
	pa ON stress;	
	pa#1 ON stress prior_pa;	
	% BETWEEN%	
	pa ON gender;	
	pa#1 ON gender;	
		-
•		<u> </u>
Ready		Ln 30, Col 32 NUM
d Star	rt Microsoft PowerPoint - [) Power (Exponential) Calc My Mplus - [zip_conditio	« 🍰 🛂 🚺 3:17 PM

Model Results: Logistic Model

	Regression		
Effect	Coefficient	exp(B)	p-value
Intercept y ₀₀	1.28		
Gender γ_{01}	-0.28	0.76	.047
Prior $PA\gamma_{10}$	-1.23	0.29	.001
Stress γ_{20}	0.36	1.43	.023
Note. Prior PA (O=no	o 1=ves)		

•Females, individuals with no previous experience of formal PA, and individuals with higher stress are more likely in the "zero class"

Interpret as in logistic MRM (Logit[PA])

Model Results: Poisson Model

	Regression		
Effect	Coefficient	exp(B)	p-value
Intercept γ_{00}	1.42	, i i i i i i i i i i i i i i i i i i i	·
Gender γ_{01}	0.12	1.13	.074
Stress γ_{10}	-0.22	0.80	.014

 Higher stress, lower PA; but gender has no statistically significant effect

Interpret like you would for Poisson MRM
In(PA')

Practical Issues

- Model fit
 - -2 Log Likelihood (-2LL, deviance, likelihood ratio tests)
 - small values indicate better fit
 - Relative model fit for nested models deviance(fitted model)
 - "R²" = 1 ------deviance(intercept-only model
 - Non-nested models (e.g., Poisson vs. ZIP)
 Vuong (V) statistics
 Akaike or Bayesian Information Criterion

Practical Issue

- Unit-specific vs. population-average models
 - All models with nonlinear link functions can be estimated via these two methods
 - When to use each...
 - Unit-specific (conditional models):
 - Estimates conditional on random effects
 - Population-average (marginal models):

 Estimation based on average across random effects (in essence, ignoring them)

Practical Issues

- Centering (see Raudenbush & Bryk [2002], Enders [2007]
 <u>Psychological Methods</u>)
 - Uncentered, grand-mean, group-mean
- Software
 - HLM, Mplus, SuperMix, R, Stata, MLWin, SAS, etc.
 - See for a review:

Roberts, J.K., & McLeod, P. (2008). Software options for multilevel modeling. In A.A. O'Connell & D.B. Mc C oach (Eds.), <u>Multilevel Modeling of Educational Data</u> (pp. 427-467). Charlotte, NC : Information Age Publishing.

References

<u>General references for nonlinear outcomes</u>

Hedeker, D. & Gibbons, R.D. (2006). <u>Longitudinal Data</u> <u>analysis</u>. New York: Wiley.

Raudenbush, S.W., & Bryk, A.S. (2002). <u>Hierarchical</u> <u>linear models: Applications and data analysis methods</u> (2nd Ed.). Thousand Oaks, CA: Sage.

Snijders, T.A.B., & Bosker, R.J. (1999). <u>Multilevel analysis:</u> <u>An introduction to basic and advanced multilevel modeling</u> London, England: Sage.

General Categorical and Ordinal Models

Hedeker, D. (2007). Multilevel models for ordinal and nominal variables. In J. de Leeuw & E. Meijer (Eds.), <u>Handbook of multilevel analysis</u>. New York: Springer.

Hedeker, D., et al. (1999). The thresholds of change model: An approach to analyzing stages of change data. <u>Annals of Behavioral Medicine, 21,</u> 61-70.

O'Connell, A.A. et al. (2008). Multilevel logistic models for dichotomous and ordinal data. In A.A. O'Connell & D.B. McCoach (Eds.), <u>Multilevel Modeling of Educational Data (pp.</u> 199-242). Charlotte, NC. Information Age Publishing.

References

Count Models

Coxe, S., et al. (2009). The analysis of count data: A gentle introduction to Poisson regression and its alternatives. Journal of Personality Assessment, 91, 121-136.

Lee, A.H., et al. (2006). Multi-level zero-inflated Poisson regression modelling of correlated count data with excess zeros. <u>Statistical Methods in Medical Research, 15,</u> 47-61.

Min, Y., & Agresti, A. (2005). Random effects models for repeated measures of zero-inflated count data. <u>Statistical Modeling, 5</u>, 1-19.

