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OverviewOverview
• Brief review of multilevel regression modeling 

(MRM) with continuous outcomes(MRM) w th cont nuous outcomes
• Understanding Proportions (Probabilities), Odds, 

Odds Ratios
• MRM with 

– binary (multinomial) outcomesbinary (multinomial) outcomes
– ordinal outcomes
– count outcomescount outcomes

• Final Practical Issues
• Selected References
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What is multilevel modeling?What is multilevel modeling?gg
• Many synonyms

– Hierarchical linear modelingHierarchical linear modeling
– Random-effects modeling
– Mixed effects modeling– Mixed-effects modeling
– Variance components modeling

• Statistical model that allows specifying and 
estimating relationships between variablesestimating relationships between variables
– that have been observed at different levels 

of a hierarchical (or nested or clustered) 
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of a hierarchical (or nested or clustered) 
data structure



Why MRM?Why MRM?yy
• Nested data structures are everywhere

– Time periods (or repeated observations) nested Time periods (or repeated observations) nested 
within individuals (2-level structure) 

Sarah Jordan

Day 1 Day 2 Day 3 Day 4 Day 1 Day 2 Day 3 Day 4
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Why MRM?Why MRM?yy
• Nested data structures are everywhere

– Individuals nested within neighborhoods Individuals nested within neighborhoods 
(2-level structure)

Neighborhood 1 Neighborhood 2

Sarah Bill Ted Tami Jackson Kate Maria Jordan
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The logic of MRM extended to clustersThe logic of MRM extended to clusters
A  th t  h  i di id l  (l l 1) t d i  • Assume that we have individuals (level-1) nested in 
neighborhoods (level-2)

1 l l 1 ti  DV ( h i l ti it  [PA] Y )– 1 level-1 continuous DV (physical activity [PA] Yij)
– 1 level-1 IV (SES; Xij)

PA β β SES• PAij= β0+ β1SESij+ rij,
– Assume that we have grand mean-centered 

th  l l 1 IVthe level-1 IV
– β0 is …………. β1 is …………………….

( )  2  h  diff  l   f  – var(rij) = σ2, how different people are from 
their own neighborhood's regression line

66



Regression in a single neighborhoodRegression in a single neighborhood

 
 

 PA’ = 10 81 + 2 51(SES) + r1

77

PA = 10.81 + 2.51(SES) + r1



2 neighborhoods2 neighborhoodsgg
• Neighborhood 1

– Yi = β01+ β11Xi+ riYi = β01+ β11Xi+ ri

• Neighborhood 2
– Y = β + β X + r– Yi = β02+ β12Xi+ ri

• So each neighborhood has its own intercept 
and slopeand slope
– this in effect serves as further "data" 
– distribution of intercepts and slopes can be – distribution of intercepts and slopes can be 

summarized with
• the mean

88

the mean
• the variance relative to the mean



MRM ModelMRM Model
E h l l i  t d b  it   b d l• Each level is represented by its own submodel
– level-1 DV = PA (Yij)

level 1 IV = individual’s SES (X )– level-1 IV = individual s SES (Xij)
– level-2 IV = neighborhood SES (Zj)

• Equations for group structured data
– Lowest (individual) level (level-1):Lowest (individual) level (level 1):

• Yij = β0j + β1jXij + rij
– Upper (group) level (level-2):Upper (group) level (level 2):

• β0j= γ00 + γ01Zj + u0j
• β1j= γ10 + γ11Zj + u1j
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β1j  γ10  γ11Zj  u1j



The interceptThe intercept--only (or empty) modelonly (or empty) model
L l 1 ti  Y  β  • Level-1 equation: Yij= β0j + rij

– β0j = mean PA score for each neighborhood
– rij = variance (σ2) of each individual’s PA score 

around the mean PA for their respective 
neighborhoodneighborhood

l l 2 ti  β   • level-2 equation: β0j= γ00 + u0j

– γ00 = mean PA scores across neighborhood
i  d • i.e., grand mean

– u0j = variance (τ00) of each neighborhood mean 
d th  d 

1010

around the grand mean



The interceptThe intercept--only modelonly model
• Intraclass correlation coefficient (variance partition 

coefficient) = 
• variance between groups• ____variance between groups______

variance between + variance within 

• ρ = τ00 / (τ00 + σ2) =

– proportion of variance in PA between neighborhoods
• e.g., ρ = .27 means that 27% of the variability in 

PA  i  b t  i hb h dPA scores is between neighborhoods
• Also refers to the intracluster correlation 

between two level-1 units in the same level-2 unit

1111

between two level 1 units in the same level 2 unit

•



Moving beyond continuous outcomes Moving beyond continuous outcomes g yg y

• Categorical observed variables
Physical Activity and Gender

n No PA      Yes PA Prob. PA
Female   1000 800 200 20Female   1000 800 200 .20
Male      1000 500 500_____  .50
Total 2000 1300 700

•Prob. or Risk (Yes PA) = 700/2000 = .35
P b  diff s b  d•Prob. differs by gender

•Risk Ratio or Relative Risk = .50/.20 = 2.50
•Males are 2 50 are more likely to engage in PA 

1212

Males are 2.50 are more likely to engage in PA 
than females



Moving beyond continuous outcomes Moving beyond continuous outcomes 
• Odds and Odds Ratios

Physical Activity and Gender
n PA Prop.   Odds(Prop./1-Prop.)

Female  1000 200 .20 .25
Male      1000 500 50 1 00Male      1000 500 .50 1.00________

Odds Ratio (OR) = 1.00/.25 = 4

•The odds of engaging in PA (vs. not) is 4 times  
greater for Males (vs. Females) g

McNutt et al. (2003).  Estimating relative risk in cohort studies and clinical trials of common 
outcomes. American Journal of Epidemiology, 157, 940-943.

Osborne  J W  (2006)  Bringing balance and technical accuracy to reporting odds ratios and the 
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Osborne, J.W. (2006). Bringing balance and technical accuracy to reporting odds ratios and the 
results of logistic regression analyses. Practical Assessment Research & Evaluation, 11, 1-6.

Kleinman, L.C., & Norton, E.C. (2009). What’s the risk? A simple approach for estimating adjusted 
risk measures from nonlinear models including logistic regression. Health Services Research, 
44, 288-302.  



Moving beyond continuous outcomes Moving beyond continuous outcomes g yg y

• Generalized linear (mixed) models ([hierarchical] 
generalized linear models)generalized linear models)
– Used when…

O t m s i l t  OLS ss m ti s• Outcomes violate OLS assumptions
– Normality and homoscedasticity of residuals

P di t d t  l  ill b  “ t f ”• Predicted outcome values will be “out of range”
• Relationship of interest is nonlinear

• How to address these problems?
– The link function: the log (natural)

1414



The link functionThe link function
• Binary case: Logistic regression model

– Predicting the probability of group membership  
  l  l  ( l  )for an underlying variable (slide 16)

• prediction not constant for full range of X
– Log [P(yi = 1) / 1- P(yi = 1)] = B0 + BiXi….

• Logit [log odds] function
• Model is linear for logits (not probabilities)

– can convert back to probabilities byp y
• Predicted Prob. = 1 / [1 + e-(BO + B1X1)]

1515



Probability Curve (Sigmoid Curve)Probability Curve (Sigmoid Curve)
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Interpreting Regression CoefficientsInterpreting Regression Coefficients

• Log [P(yi = 1) / 1- P(yi = 1)] = -0.60 + .39(E)
– Regression coefficients interpreted as in OLSRegression coefficients interpreted as in OLS

• Problem, the outcome is a logit value
• Exponentiate B to get OR: exp(B) = eB = 2 72.39Exponentiate B to get OR: exp(B) = e = 2.72

– exp(.39) = 1.48 = OR
– What does that mean? The case of PAWhat does that mean? The case of PA

• odds of engaging in PA (vs. not) are 1.48 
greater for a 1-unit increase in Egreater for a 1 unit increase in E

• OR multiplier: 2-unit increase E 
(1.48*1.48) = 2.19 odds of engaging in PA

1717

(1.48 1.48)  2.19 odds of engaging in PA



MRM: Logistic Regression ModelMRM: Logistic Regression Modelg gg g

• Outcome of interest: PA (1=yes, 0=no)
A  i di id l  t d ithi  i hb h d• Assume individuals nested within neighborhoods
– Regression equation: Logitij = Xiβ

 h  l  l• Testing the intercept-only model
– Allows us to gauge variation in PA across 

i hb h dneighborhoods
• Level-1: Logitij = β0j, log-odds of PA in the jth neigh.
• Level-2: β0j = γ00 + u0j

– rij is missing from the level-1 equation

1818



MRM: Logistic Regression ModelMRM: Logistic Regression Modelg gg g
– Why rij is missing from the level-1 equation

• Assume an underlying latent variable for PA• Assume an underlying latent variable for PA
– error structure must be fixed

i  f i  d t  h   t d d • variance of rij is assumed to have a standard 
logistic distribution (Mean = 0, variance = π2/3)

see Snijders and Bosker (1999)– see Snijders and Bosker (1999)
– other methods: Goldstein et al. (2002). Partitioning 

variation in multilevel models  Understanding Statistics  1 223-variation in multilevel models. Understanding Statistics, 1, 223
231.

– Let’s estimate the intercept-only model using HLM 
d d f   f 

1919

and identify parameters of interest
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The interceptThe intercept--only modelonly model
L l 2 i  β   • Level-2 equation: β0j= γ00+ u0j

– γ00 = -1.73, mean logit across neighborhoods

– τ00 (variance of u0j) = 1.32
• Variance between neighborhoods around the 

grand mean logit (i.e., -1.73, p < .001)

– Converting γ00 = -1.73 to a probability
• Prob. (PA=1) = 1 / (1 + exp[-logit value])
• Prob. (PA=Yes) = 1 / (1 + exp[1.73]) = .15

2121

– Neighborhood-wide PA rate (Prob.)



The interceptThe intercept--only modelonly model
C l l t   fid  i t l (CI) t  f th  • Calculate a confidence interval (CI) to further 
probe neighborhood variability

95% CI   l it (1 96 * √V  l it)– 95% CI = mean logit ± (1.96 * √Var. logit)
– 95% CI = -1.73 ± (1.96 * √1.32)

95% CI  3 98  0 52– 95% CI = -3.98 to 0.52

– Convert these to probabilities as previous
• 95% CI = .02 to .63

2222



The interceptThe intercept--only modelonly model
• Calculate intraclass correlation coefficient

 / (  2)  1 32 / (1 32  2 / 3)  29• ρ = τ00 / (τ00 + σ2) = 1.32 / (1.32 + π2 / 3) = .29

– 29% of the variability in PA logit values is between – 29% of the variability in PA logit values is between 
neighborhoods

– Other indices include median OR
• See Merlo and Larsen in Journal of Epidemiology 

d C mm it  H lth (2003 2005 2006)and Community Health (2003,2005,2006)

•

2323



The conditional modelThe conditional model
• Modeling variabilityModeling variability

– Level-1 predictors
• Gender (0=female  1=male)Gender (0=female, 1=male)
• Home Ownership (0=rent, 1=own)

– Level-2 predictor– Level-2 predictor
• Neighborhood SES (grand-mean centered)

• Level-1 equation: Logitij= β0j+ β1jGenderij+ β2jOwnij
• Level-2 equations:Level 2 equations:

• β0j= γ00 + γ01SESj+ u0j
• β1j= γ10 and β2j= γ20

2424

β1j γ10 and β2j γ20
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Model ResultsModel Results
Regression AdjustedRegression Adjusted

Effect Coefficient       OR p-value
Intercept γ00 -1.75
SES γ01 -0.28 0.75 .126
Gender γ10 0.45 1.56 <.001
O 0 54 0 58 < 001Own γ20 -0.54 0.58 <.001

•Males and Renters more likely to engage in PAy g g
•Interpreting ORs

•Gender: The odds of engaging in PA (vs. not) 
i  1 56 ti  t  f  l  (  f l )is 1.56 times greater for males (vs. females)
•Own: The odds of engaging in PA (vs. not) is 
0 56 times less likely for homeowners (vs  

2626

0.56 times less likely for homeowners (vs. 
renters)



MRM: Logistic Regression ModelMRM: Logistic Regression Modelg gg g

• Converting to predicted probabilities to aid 
interpretationinterpretation
– We have a regression equation:

S b tit t  di t  l  i  ti

Logitij = -1.75 + .45(Gender) - .54(Own) - .28(SES)…  

– Substitute predictor values in equation
• For male, homeowner, average neighborhood 

SESSES
• Prob. (PA=1|x) = 1 / (1 + exp[-logit value])

P b  (PA 1| )  1 / (1  [1 84])  14
2727

• Prob. (PA=1|x) = 1 / (1 + exp[1.84]) = .14



MRM: Logistic Regression ModelMRM: Logistic Regression Modelg gg g

• Converting to predicted probabilities to aid 
interpretationinterpretation
– We have a regression equation:

S b tit t  di t  l  i  ti

Logitij = -1.75 + .45(Gender) - .54(Own) - .28(SES)…  

– Substitute predictor values in equation
• For female, homeowner, average neighborhood 

SESSES
• Prob. (PA=1|x) = 1 / (1 + exp[-logit value])

P b  (PA 1| )  1 / (1  [2 29])  09
2828

• Prob. (PA=1|x) = 1 / (1 + exp[2.29]) = .09



Moving on: The Multinomial (Nominal) CaseMoving on: The Multinomial (Nominal) Caseg ( )g ( )

• Similar to binary case in many ways
M lti i l l it i  th  li k f ti  b t   – Multinomial logit is the link function, but now we 
have multiple equations
Ass m  3 t i s f  th  t m– Assume 3 categories for the outcome
• Log[P(yi = category 1) / P(yi = reference )] = Xiβ

L [P(  t  2)/ P(  f  )]  X β• Log[P(yi = category 2)/ P(yi = reference )] = Xiβ
• Thus, our outcome at level-1 will be the log-

dds f f lli  i t  t  1 ( l ti  t  th  odds of falling into category 1 (relative to the 
reference category)

• And similarly for category 2
2929

• And similarly for category 2



MRM: Multinomial Logistic Regression ModelMRM: Multinomial Logistic Regression Modelg gg g

• Outcome of interest: intentions to engage in PA 
(1  2 t  3 )– (1=yes, 2=not sure, 3=no)

– no category serves as the reference group
 l   h  h h• Assume individuals nested within neighborhoods

• Testing the intercept only model
– Level-1 Equations

• Log[P(yi = yes) / P(yi = no)] = β0j(1)j

• Log[P(yi = not sure) / P(yi = no)] = β0j(2)

3030



MRM: Multinomial Logistic Regression ModelMRM: Multinomial Logistic Regression Modelg gg g

– Level-2 Equations
Β   • Β0j(1) = γ00(1) + u0j(1)

• Β0j(2) = γ00(2) + u0j(2)

• Estimate the model in HLM

3131
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The interceptThe intercept--only modelonly model
L l 2 i  1  Β   • Level-2 equation 1: Β0j(1) = γ00(1) + u0j(1)

– γ00(1) = 0.91
• Mean logit for saying yes to PA is greater than 

saying no to PA

– τ00(1) (variance of u0j(1)) = 0.20 (p = .002)
• Suggests statistically significant variation in 

logit values

3333



The interceptThe intercept--only modelonly model
L l 2 i  2  Β   • Level-2 equation 2: Β0j(2) = γ00(2) + u0j(2)

– γ00(2) = -0.02
• Mean logit for saying not sure to PA is similar

to saying no to PA

– τ00(2) (variance of u0j(2)) = 0.04 (p = .302)
• Suggests NO statistically significant variation 

in logit values between neighborhoods
R  d  ff  – Remove random effect u0j(2)

– Low likelihood that level-2 predictors will 
k

3434

work



The interceptThe intercept--only modelonly model
• Calculate ρ

 / (  2)  0 20 / (0 20  2 / 3)  06• ρ(1) = τ00(1) / (τ00(1) + σ2) = 0.20 / (0.20 + π2 / 3) = .06

– 6% of the variability in PA logit values is between – 6% of the variability in PA logit values is between 
neighborhoods

• ρ(2) = τ00(2) / (τ00(2) + σ2) = 0.04 / (0.04 + π 2 / 3) = .01

% f h  l    l  l    – 1% of the variability in PA logit values is between 
neighborhoods 

3535•



The conditional modelThe conditional model
L l 1 di t• Level-1 predictors
– SES (grand mean centered)

• Level-2 predictor
– Neighborhood control over crime (grand-mean 

t d)centered)
• Same equations for both logit values

Level 1 equation: Logit = β + β SES– Level-1 equation: Logitij= β0j+ β1jSESij
– Level-2 equations:

• β = γ + γ Control + u• β0j= γ00 + γ01Controlj+ u0j
• β1j= γ10

3636



HLMHLM

3737



Model Results: Comparison 1Model Results: Comparison 1

Regression   Adjusted
Effect Coefficient       OR p-valueEffect oeff c ent       OR p value
Intercept γ00(1) 1.08
Control γ01(1) 2.10 8.13 .001( )
SES γ10(1) 0.40 1.49 .001_

High control over crime neighborhoods and •High control over crime neighborhoods and 
individuals with higher SES more likely to say 
yes (relative to no) to engaging in PAyes (relative to no) to engaging in PA
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MRM: Multinomial Logistic Regression ModelMRM: Multinomial Logistic Regression Modelg gg g

• Converting to predicted probabilities to aid 
interpretationinterpretation

Logitij = 1.08 + 2.10(Control) + .40(SES)…  

– Substitute predictor values in equation
F  i di id l  ith  i hb h d • For individuals with average neighborhood 
control & individual SES

P b  (PA 1| )  1 / (1  [ 1 08])  75– Prob. (PA=1|x) = 1 / (1 + exp[-1.08]) = .75
• vs. 1 SD above the mean for control

P b  (PA 1| )  1 / (1  [ 3 08])  95
3939

– Prob. (PA=1|x) = 1 / (1 + exp[-3.08]) = .95



Model Results: Comparison 2Model Results: Comparison 2

Regression   Adjusted
Effect Coefficient       OR p-valueEffect oeff c ent       OR p value
Intercept γ00(2) 0.09
Control γ01(2) 0.04 1.04 .773( )
SES γ10(2) 0.03 1.03 .830_ 

Predictors do not differentiate those who are •Predictors do not differentiate those who are 
unsure of intending to engage in PA and those 
who do not intend to engage in PAwho do not intend to engage in PA

4040



Moving on: The Ordinal CaseMoving on: The Ordinal Casegg
• Similar to multinomial case in many ways…

– …but preserves the continuum of the data…but preserves the continuum of the data
• e.g., Likert items
• e g  (1=never  2=sometimes  3=often)e.g., (1=never, 2=sometimes, 3=often)

– Statistical model is the cumulative probability or 
logit modellogit model
• Take our outcome from the previous analysis

– Do you intend to engage in PA?Do you intend to engage in PA?
• 1=yes, 2=not sure, 3=no

– Each of these outcomes can take on a 

4141

– Each of these outcomes can take on a 
probability and cumulative probability value



Moving on: The Ordinal CaseMoving on: The Ordinal Case
– To  capture the ordered categorical nature of 

the data we consider cumulative logits (Clog)
      h  – Assume our 3 ordered categories for the 

outcome
CL [P(  ) / P(  t  & )]  X β• CLog[P(yi = yes) / P(yi = not sure & no)] = Xiβ

• CLog[P(yi = yes & not sure)/ P(no)] = Xiβ
• Our outcomes at level-1 will be 

– the log-odds of falling into yes vs. the two 
hi h  t ihigher categories

– the log-odds of falling into yes & not sure 
 

4242

vs. no



Moving on: The Ordinal CaseMoving on: The Ordinal Case
– Proportional Odds Model

• Assumes that the effect of the predictors on 
h  l  l   lthe cumulative logits is identical

– Non-Proportional Odds Model relaxes this 
tiassumption

• Similar to a multinomial case

– We will assume Proportional Odds in the current 
lexample

– Level-2 variance assessment the same as 
i

4343

previous



MRM: Ordinal Regression ModelMRM: Ordinal Regression Modelgg

• Outcome of interest: intentions to engage in PA 
(1  2 t  3 )– (1=yes, 2=not sure, 3=no)

• Assume individuals nested within neighborhoods
  l l• Testing a conditional model

– Level-1 predictors
• SES (grand mean centered)

– Level-2 predictor
• Neighborhood control over crime (grand-mean 

centered)

4444



The conditional modelThe conditional model
S  ti  f  b th l ti  l it ti• Same equations for both cumulative logit equations
– Level-1 equation: CLogij= β0j+ β1jSESij

Level 2 equation:– Level-2 equation:
• β0j= γ00+ γ01Controlj+ u0j
• β = γ• β1j= γ10 

• Thresholds
– Assumes a latent continuous variable underlies  

the outcome
– These “cut-points” are intercept terms for each  

CLog equation
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Model ResultsModel Results
Regression   AdjustedRegression   Adjusted

Effect Coefficient       OR p-value
Control γ01 1 54 4 67 001Control γ01 1.54 4.67 .001
SES γ10 0.35 1.42 <.001

•High control over crime neighborhoods and 
individuals (within neighborhoods) with higher 
SES  lik l  t   ( l ti  t  t  SES more likely to say yes (relative to not sure 
& no) to PA

•And for yes and not sure relative to no•And for yes and not sure relative to no

•Values from the regression equation can be

4747

g q
converted to predicted probabilities as before



MRM: Ordinal Regression ModelMRM: Ordinal Regression Model
• Other ordered logit models

– Stage/Continuation Ratio Approach
• “yes” vs. “not sure & no”
• “not sure” vs. “no”

– Adjacent Category Approach
• “yes” vs. “not sure”y
• “not sure” vs. “no”

Fullerton  A S  (2009)  A conceptual framework for ordered logistic Fullerton, A.S. (2009). A conceptual framework for ordered logistic 
regression models. Sociological Methods & Research, 38, 306-347.

Liu, I., & Agresti, A. (2005). The analysis of ordered categorical data: 
An overview and a survey of recent developments. Test, 14, 1-73.

4848
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Moving on: Poisson MRMMoving on: Poisson MRM
• Seeks to model count variables

– Nonnegative integersg g
– Often have many zeros

• Positively skewed distributiony
– # days engaged in PA over a 30 day period

• Average number of days engaged in PA over Average number of days engaged in PA over 
this period (λ; rate parameter)

– The natural log (ln) of the target “event” is the g ( ) f g
link function
• ln(λ’) = B0 + B1(Extraversion[E])… , 

4949

( ) 0 1( [ ])
– where λ’=predicted count variable



Poisson DistributionPoisson Distribution
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Interpreting Regression CoefficientsInterpreting Regression Coefficients

• ln(PA’) = 1.32 + .35(E)
– Like OLS regression interpreting ln(PA’) Like OLS regression interpreting ln(PA ) 

– Like logistic regression  exponentiating the Like logistic regression, exponentiating the 
equation/terms is helpful
• eln(PA’) = e(1.32 + .35[E])e  e
• eln(PA’) = PA’  PA’ = e(1.32 + .35[E])

– outcome is now in the original metricoutcome is now in the original metric
• Working on the right-side

e(1 32 + 35[E]) = e1 32e 35(E)

5151

e(1.32 + .35[E]) = e1.32e.35(E)



Interpreting Regression CoefficientsInterpreting Regression Coefficients

• PA’ = e1.32e.35(E) 

– exp(Bo) = exp(1.32) = 3.75exp(Bo)  exp(1.32)  3.75
• Predicted days of PA for a person of average 

E (assume E was grand-mean centered)( g )

– exp(B1) = exp(.35) = 1.42exp(B1)  exp(.35)  1.42
• Event (or Rate or Incidence) Ratio

– Predicted multiplicative effect of a 1-unit Predicted multiplicative effect of a 1 unit 
change in E on days of PA

• e.g., a 4 (relative to a 3) on E will engage 

5252

e.g., a 4 (relative to a 3) on E will engage 
in PA 1.42 times more



Interpreting Regression CoefficientsInterpreting Regression Coefficients

• Let’s take a further look at this issue
– PA’ = eB0 + B1(E)…PA   e

• PA’ = e1.32 + .35(E), E is grand-mean centered

• Substitute values for E to get predicted Substitute values for E to get predicted 
number of events (days of PA)

– e.g., PA’ = e1.32 + .35(4) =  15.21e.g., PA   e   15.21
– e.g., PA’ = e1.32 + .35(3) =  10.71

• 10 71 * 1 42 = 15 2110.71  1.42 = 15.21

5353



The conditional modelThe conditional model
• Modeling variabilityModeling variability

– Level-1 predictors
• Stress (continuous measure)Stress (continuous measure)

– Level-2 predictor
• Gender (0=female  1=male)• Gender (0=female, 1=male)

• Level-1 equation: ln(PA)ij= β0j+ β1jStressLevel 1 equation: ln(PA)ij= β0j+ β1jStress
• Level-2 equations:

• β0j= γ00+ γ01Genderj+ u0jβ0j γ00 γ01Genderj u0j
• β1j= γ10
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Model ResultsModel Results
RegressionRegression

Effect C  oefficient exp(B)   p-value
Intercept γ00 0.46p γ00
Gender γ01 1.43 4.18   .013
Stress γ10 -1.17 0.31 .001

•Males and individuals with lower stress are  
more likely to engage in PAmore l kely to engage n PA

•Exponentiating regression coefficients gives us  
event (incident or rate) ratio

5656



Model ResultsModel Results
• Further Interpretation• Further Interpretation

– Gender: Males on average engage in PA 4.18 
times more than females  holding stress constanttimes more than females, holding stress constant
• PA’ (male)     = e0.46 + 1.43(1) – 1.17(0) =  6.63

PA’ (female) = e0 46 + 1 43(0) – 1 17(0) =  1 58• PA  (female) = e0.46 + 1.43(0) – 1.17(0) =  1.58
• The Multiplier = 1.58 * 4.18 = 6.63

St  1 it h  i  t  i t d ith  – Stress: 1-unit change in stress associated with a 
.31 times change in PA, holding gender constant

PA’ (stress 1)  e0 46 + 1 43(0) – 1 17(1)  0 49• PA  (stress=1) = e0.46 + 1.43(0) – 1.17(1) = 0.49
• PA’ (stress=0) = e0.46 + 1.43(0) – 1.17(0) = 1.58
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Poisson MRMPoisson MRM
A i  i bilit   • Assessing variability  
– Depends on the program used

• Programs like HLM and Mplus do NOT 
estimate level-1 variance

O i– Options
• Assume a normal distribution for level-1 

id lresiduals
• Use a simulation method

A   l l 1 P i  di ib i  • Assume a level-1 Poisson distribution 
with a specific mean/variance
U  t ti ti l i ifi  t t d CI 
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• Use statistical significance test and CI 
for level-2 variability



Poisson MRMPoisson MRM
– Constant exposure vs. Variable exposure

• Counts (Events) per unit time or population ( ) p p p
size is the outcome (offset)

– becomes a rate
– Overdispersion

• Variance > Mean
• Largely influences standard errors 
• Use either

– Overdispersed Poisson Model (Φ)
– Negative Binomial (Φ plus other Poissons)
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Negative Binomial (Φ plus other Poissons)



MRM: ZeroMRM: Zero--Inflated Poisson (ZIP) Inflated Poisson (ZIP) 
Regression ModelRegression Modelgg

• Mixture of logistic and Poisson regression models
– Used when Used when 

• there are “excess 0s” for the Poisson
• there are two ways that 0s can be generated • there are two ways that 0s can be generated 

– structural: those that will never engage in 
PAPA

– regular Poisson 0s: those that will engage, 
but did not in the time-intervalbut did not in the time interval

• Issue becomes finding predictors that 
differentiates these two groups
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differentiates these two groups



MRM: ZeroMRM: Zero--Inflated Poisson Inflated Poisson 
Re ressi n M delRe ressi n M delRegression ModelRegression Model

• ZIP models explore the prediction of latent groups p p g p
(“always 0 group” vs. “not always 0 group”)
– Logit is used to model this latent binary outcomeg y

• “zero” class (coded 1)

• Part II: Poisson model
– Regular Poisson without the excess 0sRegular Po sson w thout the excess 0s

• Can have different predictors for each equation
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Can have different predictors for each equation



MPlusMPlus
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Model Results: Logistic ModelModel Results: Logistic Model
RegressionRegression

Effect Coefficient    exp(B)   p-value
Intercept γ00 1.28p γ00
Gender γ01 -0.28 0.76 .047
Prior PAγ10 -1.23 0.29 .001

 Stress γ20 0.36 1.43 .023
Note. Prior PA (0=no, 1=yes)

•Females, individuals with no previous 
experience of formal PA, and individuals with 
higher stress are more likely in the “zero class”

I t t s i  l isti  MRM (L it[PA])
6363

•Interpret as in logistic MRM (Logit[PA])



Model Results: Poisson ModelModel Results: Poisson Model
RegressionRegression

Effect Coefficient    exp(B)   p-value
Intercept γ00 1.42p γ00
Gender γ01 0.12 1.13         .074
Stress γ10 -0.22 0.80 .014

•Higher stress, lower PA; but gender has no 
statistically significant effectstat st cally s gn f cant effect

•Interpret like you would for Poisson MRM
•ln(PA’)
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Practical IssuesPractical Issues
• Model fit• Model fit

– -2 Log Likelihood (-2LL, deviance, likelihood 
ratio tests)ratio tests)
• small values indicate better fit

Relative model fit for nested models • Relative model fit for nested models 
deviance(fitted model)                    

“R2” = 1 

N d d l  (  P   Z P)

R2  = 1 - -------------------------------------
deviance(intercept-only model

– Non-nested models (e.g., Poisson vs. ZIP)
• Vuong (V) statistics
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• Akaike or Bayesian Information Criterion



Practical IssuePractical Issue
• Unit-specific vs. population-average models

– All models with nonlinear link functions can 
   h   hbe estimated via these two methods

– When to use each…
• Unit-specific (conditional models):

– Estimates conditional on random effects
• Population-average (marginal models): 

– Estimation based on average across 
random effects (in essence, ignoring 
them)
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Practical IssuesPractical Issues
• Centering (  R d b h & B k [2002]  E d  [2007] • Centering (see Raudenbush & Bryk [2002], Enders [2007] 

Psychological Methods)

– Uncentered, grand-mean, group-meanUncentered, grand mean, group mean
• Software

– HLM  Mplus  SuperMix  R  Stata  MLWin  SAS  HLM, Mplus, SuperMix, R, Stata, MLWin, SAS, 
etc.

– See for a review:See for a review
Roberts, J.K., & McLeod, P. (2008). Software 

options for multilevel modeling. In A.A. O’Connell & D.B. 
M  C h (Ed )  M ltil l M d li  f Ed ti l D t  Mc C oach (Eds.), Multilevel Modeling of Educational Data 
(pp. 427-467). Charlotte, NC : Information Age Publishing.
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Poisson DistributionPoisson Distribution
• Probability distribution for the Poisson is:• Probability distribution for the Poisson is:

e-λ * λy

P b (PA )  

A  h     4

Prob.(PA=y) = --------------------
y!

• Assume the rate parameter λ = 4
e-4 * 43

P b ( Y 3)    19   Prob.( Y =3) =  -------------------- = .19   
3!
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