Characteristics of School Campuses and Youth Physical Activity

Angie Cradock\(^1\)
Steve Melly\(^1\)
Joseph Allen\(^1\)
Arthur Sobol\(^1\)
Jeffrey Morris\(^2\)
Steve Gortmaker\(^1\)

\(^1\)Harvard School of Public Health, Boston, MA
\(^2\)University of Texas, MD Anderson Cancer Center, Houston, TX

Funding by the Robert Wood Johnson Foundation Active Living Research
Background

• Increasing overweight among youth
• Promoting lifestyle activity a strategy for obesity prevention (IOM Report, 2005)
• Small, accumulated differences in physical activity may contribute to greater energy expenditure
 – E.g. Walk to school: 8-14 extra minutes MVPA from 8-9am than car users- Cooper et al, 2003
• Schools as an influential environment for youth
Framework for Environmental influences on Physical Activity

Personal Factors

Social/ Organizational Factors

Physical Activity

Physical Environmental Factors

Spatial Scale
- Urban design
- Site selection and design
- Building design
- Building element design

Zimring, AJPM 2005
School Physical Environments: Spatial Scale

- Site selection and design
 - Location, size, fields, play space, parking
- Building design
 - Size, interior spaces for physical activity
School Physical Environments: Spatial Scale

- **Site selection and design**
 - Location, size, fields, play space, parking
- **Building design**
 - Size, interior spaces for physical activity
- **Evidence from the literature**
 - Sallis, 2001 - For girls - size of activity space was positively related to PA participation
 - Students were more active in areas with more improvements such as courts / supervision
Study Background

• Planet Health Study (1995-1997)
• 10 Middle Schools in 4 communities in Massachusetts
• Survey data and TriTrac-R3D activity monitor data (1997)
• 1 or 2, 4-day monitoring sessions
• 248 students, 58% Male, Age: 13.7 years
• Race/Ethnicity: 56% white, 11% Black, 14% Hispanic, 11% Asian
Developing Objective Measures of School Physical Environments Using GIS

- Obtain relevant data from sources (Federal, State, Local Private)
- Orthophotos from 1995 and 2001
Developing Objective Measures of School Physical Environments Using GIS

- Obtain relevant data from sources
- Orthophotos from 1995 and 2001
- Parcel and Building Footprints
Developing Objective Measures of School Physical Environments Using GIS

- Obtain relevant data from sources
- Use queries to select local features
Developing Objective Measures of School Physical Environments

- Obtain relevant data from sources
- Use queries to select local features
- Screen digitize to represent local features
Developing Objective Measures of School Physical Environments Using GIS

- Obtain relevant data from sources
- Use queries to select local features
- Screen digitize to represent local features
- Calculate attributes and create dataset
Developing Objective Measures of School Physical Environments Using GIS

- Obtain relevant data from sources
- Use queries to select local features
- Screen digitize to represent local features
- Calculate attributes and create dataset
- Verify with site visit and interview
School Characteristics

• Campus area/student 8.8-143.7m²
• Building area/student 12.1-24.7m²
• Play area/student 0.4-58.9m²
Data Analysis Methods

- Outcome - average (log) vector magnitude for 15 minute interval during school day (N=16,578)
- Covariates include age, sex, race/ethnicity, BMI, days of PE, day of week and time of day
- SAS Proc Mixed - data clustered within school, individual, and day
- Repeated = time of day, Type = power spatial covariance
- Separate models for each school environmental characteristic
Estimated Vector Magnitude Over the School Day

Vector Magnitude

Time
<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>5.2267***</td>
<td>0.5105</td>
</tr>
<tr>
<td>BMI</td>
<td>0.006907</td>
<td>0.006807</td>
</tr>
<tr>
<td>Age</td>
<td>-0.07278</td>
<td>0.04305</td>
</tr>
<tr>
<td>Female</td>
<td>-0.2367***</td>
<td>0.06268</td>
</tr>
<tr>
<td>Black</td>
<td>0.1189</td>
<td>0.1018</td>
</tr>
<tr>
<td>Hispanic</td>
<td>0.1248</td>
<td>0.0914</td>
</tr>
<tr>
<td>Asian</td>
<td>-0.04327</td>
<td>0.09633</td>
</tr>
<tr>
<td>Other</td>
<td>0.3004*</td>
<td>0.1178</td>
</tr>
<tr>
<td>Tuesday</td>
<td>-0.1617***</td>
<td>0.04471</td>
</tr>
<tr>
<td>Wednesday</td>
<td>-0.2055***</td>
<td>0.04607</td>
</tr>
<tr>
<td>Thursday</td>
<td>-0.0946*</td>
<td>0.03834</td>
</tr>
<tr>
<td>Friday</td>
<td>-0.1809***</td>
<td>0.0442</td>
</tr>
<tr>
<td>PE</td>
<td>0.08234</td>
<td>0.04639</td>
</tr>
<tr>
<td>Campus Area/Student</td>
<td>0.2244***</td>
<td>0.05832</td>
</tr>
</tbody>
</table>

Referent variables are male, white, Monday, and 12:00-12:14; models include 15-minute time of day indicators that are not shown here.

*p<0.05, **p<0.01, ***p<0.001

SE- Standard Error
<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>5.2595***</td>
<td>0.524</td>
</tr>
<tr>
<td>BMI</td>
<td>0.006152</td>
<td>0.006971</td>
</tr>
<tr>
<td>Age</td>
<td>-0.07223</td>
<td>0.04396</td>
</tr>
<tr>
<td>Female</td>
<td>-0.222***</td>
<td>0.06377</td>
</tr>
<tr>
<td>Black</td>
<td>0.08648</td>
<td>0.1035</td>
</tr>
<tr>
<td>Hispanic</td>
<td>0.1208</td>
<td>0.09368</td>
</tr>
<tr>
<td>Asian</td>
<td>-0.06899</td>
<td>0.09801</td>
</tr>
<tr>
<td>Other</td>
<td>0.2778*</td>
<td>0.1207</td>
</tr>
<tr>
<td>Tuesday</td>
<td>-0.1604***</td>
<td>0.04472</td>
</tr>
<tr>
<td>Wednesday</td>
<td>-0.2054***</td>
<td>0.04608</td>
</tr>
<tr>
<td>Thursday</td>
<td>-0.09704*</td>
<td>0.0384</td>
</tr>
<tr>
<td>Friday</td>
<td>-0.1852***</td>
<td>0.0443</td>
</tr>
<tr>
<td>PE</td>
<td>0.1257**</td>
<td>0.04548</td>
</tr>
<tr>
<td>Playground Area/Student</td>
<td>0.347*</td>
<td>0.1474</td>
</tr>
</tbody>
</table>

Referent variables are male, white, Monday, and 12:00-12:14; Models include 15-minute time of day indicators that are not shown here.

*p<0.05, **p<0.01, ***p<0.001

SE- Standard Error
<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>5.0945***</td>
<td>0.5411</td>
</tr>
<tr>
<td>BMI</td>
<td>0.004414</td>
<td>0.006919</td>
</tr>
<tr>
<td>Age</td>
<td>-0.075</td>
<td>0.04403</td>
</tr>
<tr>
<td>Female</td>
<td>-0.2144***</td>
<td>0.0637</td>
</tr>
<tr>
<td>Black</td>
<td>0.07217</td>
<td>0.1028</td>
</tr>
<tr>
<td>Hispanic</td>
<td>0.09526</td>
<td>0.09309</td>
</tr>
<tr>
<td>Asian</td>
<td>-0.06578</td>
<td>0.09825</td>
</tr>
<tr>
<td>Other</td>
<td>0.2772*</td>
<td>0.121</td>
</tr>
<tr>
<td>Tuesday</td>
<td>-0.1605***</td>
<td>0.04472</td>
</tr>
<tr>
<td>Wednesday</td>
<td>-0.2056***</td>
<td>0.04608</td>
</tr>
<tr>
<td>Thursday</td>
<td>-0.1004**</td>
<td>0.03847</td>
</tr>
<tr>
<td>Friday</td>
<td>-0.1894***</td>
<td>0.0444</td>
</tr>
<tr>
<td>PE</td>
<td>0.0904</td>
<td>0.04934</td>
</tr>
<tr>
<td>School Building Area/Student</td>
<td>2.1302*</td>
<td>0.9235</td>
</tr>
</tbody>
</table>

Referent variables are male, white, Monday, and 12:00-12:14; Models include 15-minute time of day indicators that are not shown here. *p<0.05, **p<0.01, ***p<0.001. SE- Standard Error.
Conclusions

• Larger campuses, schools, and play areas per enrolled student are associated with increased physical activity in middle school students.

• An approximate increase in 20-30% in average vector magnitude in this sample of schools.

• Translates into approximately 34 Kcals/day or ~ 2 miles/week of walking.
Potential Mechanisms

• Instrumental physical activity (walking to and from classes, cafeteria)
• Space to move around (at recess, in between classes)
• Other potential factors (school programming, supervision, equipment)
Summary

• Schools differ in their physical characteristics
• Larger campuses, schools, and play areas per enrolled student are associated with increased physical activity in middle school students
 – 20% increase in average vector magnitude or 2 miles per week of walking
• There is room for further study
• Methods are quite replicable
• Implications for policy and design practice
Thank You......
What influences school site and construction standards?

- Congestion, traffic
- Available land
- Enrollment trends in a district/area
- Program requirements
- Condition of existing facilities
- Plans for local/community use
- Community concerns about equity, educational outcomes
- $$\text{EPA, 2003; Perkins, 2001}$$
<table>
<thead>
<tr>
<th>State Regulations or Recommendations</th>
<th>Massachusetts</th>
<th>California</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size standards for Site Selection</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Guidelines for Site selection</td>
<td>Yes</td>
<td>Not Sure</td>
</tr>
<tr>
<td>Size standards for school building</td>
<td>Sort of…</td>
<td>Yes</td>
</tr>
<tr>
<td>Standards for Play area</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Size standards for school building

- Massachusetts
- **Sort of...** no more than 135 square feet/student for $$$
- Only one of our schools met this criteria (130.5 square feet/student)

- California
- **Yes-** 80 square feet/student minimum

167 sq feet/student general architectural guidelines for middle schools
Standards for Play area

- Massachusetts - No
- California - Yes
- 4-8.5 acres for our range of school enrollment (16,187-34,398 m²)
- 3 schools in our sample meet this standard (suburban areas)