Why I love PA
Where I am going?

• Describe how economists think about physical activity
• Review economic studies on physical activity
• Present preliminary results from our study
 – What factors are associated with physical activity?
 – What is the effect of area level characteristics on physical activity?
 – How do policies targeted towards other health behaviors interact with physical activity?
 – Does adding measure of preventive behavior affect estimates?
• Future research
Why Physical Activity?

- Cost of illness study finds inactivity cost one health plan $86 million (Garret et al, 2004).
- Inactivity accounts for ~11 percent of the attributable fraction of medical expenditures (Shinogle, 2008).
- Walking may improve blood pressure, lower % body fat, decrease BMI (Murphy et al, 2007).
- Physical Activity, even at low doses improves Cardiorespiratory fitness no matter what weight (Church et al, 2007).
How does an economist look at the issue?

- Economists look at choices when constrained by wealth, time.
- Unintended consequences; What if?
- Cawley, 2004 – SLOTH Model
 - People maximize utility subject to three constraints: time, budget and biology
 - For time constraint they use the SLOTH framework. People spend their time on Sleep, Leisure, Occupation, Transportation, or Household work.
 - Trade-offs between each may occur
Another (Our) Model

• People maximize utility (what they value) subject to income and time constraints

 – Utility is function of health, which is both produced and consumed. Utility is also a function of PA, other goods.

 – Health is produced through various components one is physical activity (which requires goods and time to produce)

 – Constrained by a full wealth budget and time
Model

- Health production includes goods that may complement (utilized together) or substitute for PA in different pathways.

- Consumption, Production
 - Consumption – substitute hour drinking with friends for hour playing football with friends
 - Production – may not value exercise but increase activity if it enhances productivity of other inputs to health production such as medications.
Model

- PA has a direct effect on utility U_A
- PA has an indirect effect on utility through the health production function U_{Hh_A}
- the full price of physical activity
 - the opportunity cost of time as well as the price of physical activity inputs.
Background - Economics

• Rashad (2007) cycling – gas prices (+), urban sprawl (-), income (-), marital status (-).

• Kaestner and Xu (2006) – Title IX increase female physical activity

• Sturm (2004) – increased leisure time (sedentary activities grew faster), increased time in transportation.
Background - Economics

• Humphreys and Ruseki (2007)
 – Income and education (+)
 – Park and Recreational spending (+) outdoor activities (both probability and time spent); (+) individual sports

• Courtemanche and Cardin (2008)
 – Regular Wal-Mart decreases probability of regular exercise
 – But they increase fruit/veg consumption, decrease fat, decrease BMI – no need to exercise?
Background - Economics

• Mullahy and Rober, 2008
 – ATUS 2005, 2006
 – Education associated with increased PA on weekends/holidays
 – Males with spouses decrease in PA
 – Females less PA on weekend/holidays
Data Issues

- Measures of PA (all kinds), rich data on individual, family, other health measures
- Longitudinal data
- Geographic identifiers
- Exogenous shock
- Prefer national data
- We settle with:
 - Behavioral Risk Factors Surveillance Survey 2000-2005
 - Years utilized depend on outcome variables and years of area variables
Dependent Variable

- Any leisure time exercise in past 30 days. (2000-2005)
- Vigorous leisure time activity (2003, 2005)
 - Vigorous Activity 3 or more times a week for at least 20 minutes
- Vigorous or Moderate leisure time activity (2003, 2005)
 - Light to Moderate Activity for 5 or more times a week for at least 30 minutes
Trends

Estimates of Physical Activity from Various Data Sources

<table>
<thead>
<tr>
<th>Percent of Adult Population</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHIS estimate inactive</td>
<td>29.9</td>
<td>30.1</td>
<td>29.5</td>
<td>30.4</td>
<td>29.3</td>
</tr>
<tr>
<td>BRFSS any exercise</td>
<td>75.88</td>
<td>76.94</td>
<td>77.2</td>
<td>77.26</td>
<td>77.64</td>
</tr>
<tr>
<td>BRFSS vigorous PA</td>
<td></td>
<td></td>
<td>25.01</td>
<td></td>
<td>24.53</td>
</tr>
<tr>
<td>BRFSS moderate or vigorous PA</td>
<td></td>
<td></td>
<td>45.56</td>
<td></td>
<td>45.71</td>
</tr>
</tbody>
</table>
Key Measures

• Price of related good – other health behaviors
 – Offsetting behavior on production
 – Substitutes for “enjoyment”, weight loss
 – Compliments – gateway effect, correlation of risks
 – Smoking laws
 • cigarette tax
 – Drinking laws
 • beer tax
Key Measures

- **Area effects**
 - Selection effect - exercise prone people locate in areas where they have these amenities
 - Supply effect – Industries locate in areas where demand is high
 - Lowers time costs – if amenities are closer
 - Parks per capita
 - Gyms per capita
 - Other recreational facilities per capita

- **Overweight, Obese**

- **Unobserved taste for prevention**
 - Flu shot
Key Measures

• Area level data
 – County level crime – violent and property
 – Price information from ACCRA
 • Gas, Bus Fare, Bowling, Tennis balls,
 – County Unemployment Rate
Methods

• Linear Probability Models
• State and year fixed effects
• Models
 – Demographics only
 – Add area variables
 – Add weight (obese, overweight) variables
 – Add flu shot
 – Add month fixed effects
 – Full model stratified by gender, income
Results- Any exercise

• Demographic
 – Males, White (+)
 – Age, Married, Uninsured (-)
 – Income, Education (+)
 – Retired, Student/homemaker, unemployed (+)

• Area variables
 – Unemployment (-)
 • Ruhm finds opposite
 – Both Parks and Gyms per capita (+)
 – Beer, cigarette taxes – no effect
 – Gas price (-)
 – Bus price (+)
 – Crime – no effect
Results-Any exercise

- Overweight (-), Obese (-)
- Flu Shot (+)
- Month Fixed effects
 - PA increases during spring, peaks summer, fall and then declines
Results – Vigorous Exercise

• Area effects – similar except county unemployment no longer significant

• Higher taxes on cigarettes, beer associated with decrease in vigorous PA
Stratified by Gender

- Men participation decreases with age at a diminishing rate while for women it decreases at an increasing rate.

- Gyms per capita significant for men but not women

- Overweight is negative in pooled results but becomes significant and positive in men
 - BMI not a good measure for men?
Income Stratification

- Marriage (-) effect declines with increasing income

- Out of work effect more pronounced in lower incomes

- Overweight (-) sig only at the higher income categories while obese has a stable negative effect across all income categories.

- Gyms per capita significant only at incomes >$35,000
Preliminary Conclusions

• Demographics have expected effects in all models
• Own price effects small and mixed.
• Area effects are gender specific
• Declines in vigorous exercise maybe associated with a decrease in smoking and drinking (compliments).
Future work

• Re-evaluate with other data – NHIS
• Examine other policies
 – Exposure to Title IX
 – No Child Left Behind
 – Access to play versus organized sports
 – Price measures
Other areas of research

• Disentangle the area effects
 – selection effects,
 – supply effects,
 – time cost
 – unobservables

• Examine correlation of health behaviors – unobservables such as time preferences, risk preferences

• Trade off between leisure time and other PA (transportation, work)
Policy Implications

• Factors affecting physical activity differ for males, females as well as by income
 – No one policy fits all
• Sin Taxes – no positive spillovers, may even be negative
• Physical Activity Stamps
 – Access no effect on low income population
• Deduct of physical activity expenses – FSA
• Give everyone a dog (Bauman, 2008)
My preference for dog
Unintended consequence
NHIS Data

Number of Office Visits in Past 12 Months

<table>
<thead>
<tr>
<th>Number of Visits</th>
<th>Others</th>
<th>Active</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20.1%</td>
<td>17.8%</td>
</tr>
<tr>
<td>1</td>
<td>15.5%</td>
<td>18.7%</td>
</tr>
<tr>
<td>2 to 3</td>
<td>23.5%</td>
<td>28.0%</td>
</tr>
<tr>
<td>4 to 5</td>
<td>13.8%</td>
<td>13.8%</td>
</tr>
<tr>
<td>6 to 7</td>
<td>7.1%</td>
<td>6.6%</td>
</tr>
<tr>
<td>8 to 9</td>
<td>4.0%</td>
<td>3.2%</td>
</tr>
<tr>
<td>10 to 12</td>
<td>6.5%</td>
<td>5.0%</td>
</tr>
<tr>
<td>13 to 15</td>
<td>2.6%</td>
<td>1.9%</td>
</tr>
<tr>
<td>16 or more</td>
<td>6.9%</td>
<td>5.0%</td>
</tr>
</tbody>
</table>
NHIS data

<table>
<thead>
<tr>
<th>Number of Visits</th>
<th>other (%)</th>
<th>active (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>78.11%</td>
<td>81.81%</td>
</tr>
<tr>
<td>1</td>
<td>13.52%</td>
<td>12.81%</td>
</tr>
<tr>
<td>2 to 3</td>
<td>5.92%</td>
<td>4.23%</td>
</tr>
<tr>
<td>4 to 5</td>
<td>1.35%</td>
<td>0.65%</td>
</tr>
<tr>
<td>6 to 7</td>
<td>0.48%</td>
<td>0.21%</td>
</tr>
<tr>
<td>8 to 9</td>
<td>0.17%</td>
<td>0.09%</td>
</tr>
<tr>
<td>10 to 12</td>
<td>0.22%</td>
<td>0.10%</td>
</tr>
<tr>
<td>13 to 15</td>
<td>0.06%</td>
<td>0.03%</td>
</tr>
<tr>
<td>16 or more</td>
<td>0.15%</td>
<td>0.06%</td>
</tr>
</tbody>
</table>

100.00% 100.00%

p<0.001
NHIS Data

No. of Times in Hospital Overnight in past 12 months

<table>
<thead>
<tr>
<th></th>
<th>Regularly others</th>
<th>Active</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>88.4%</td>
<td>92.8%</td>
</tr>
<tr>
<td>1</td>
<td>8.4%</td>
<td>5.9%</td>
</tr>
<tr>
<td>2</td>
<td>1.9%</td>
<td>0.9%</td>
</tr>
<tr>
<td>3</td>
<td>0.7%</td>
<td>0.2%</td>
</tr>
<tr>
<td>4 or more</td>
<td>0.6%</td>
<td>0.2%</td>
</tr>
<tr>
<td>Variable</td>
<td>Coef.</td>
<td>z-value</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>age</td>
<td>-0.009</td>
<td>-8.820</td>
</tr>
<tr>
<td>age_sq</td>
<td>0.000</td>
<td>-0.990</td>
</tr>
<tr>
<td>male</td>
<td>0.130</td>
<td>21.570</td>
</tr>
<tr>
<td>married</td>
<td>-0.001</td>
<td>-0.060</td>
</tr>
<tr>
<td>famsize</td>
<td>-0.034</td>
<td>-14.670</td>
</tr>
<tr>
<td>white</td>
<td>0.013</td>
<td>0.830</td>
</tr>
<tr>
<td>black</td>
<td>-0.170</td>
<td>-9.700</td>
</tr>
<tr>
<td>asian</td>
<td>-0.167</td>
<td>-7.350</td>
</tr>
<tr>
<td>working</td>
<td>-0.026</td>
<td>-3.280</td>
</tr>
<tr>
<td>unemployed</td>
<td>0.107</td>
<td>6.050</td>
</tr>
<tr>
<td>poor</td>
<td>0.157</td>
<td>21.130</td>
</tr>
<tr>
<td>highschool</td>
<td>0.241</td>
<td>24.780</td>
</tr>
<tr>
<td>somecollge</td>
<td>0.479</td>
<td>48.710</td>
</tr>
<tr>
<td>college</td>
<td>0.678</td>
<td>61.080</td>
</tr>
<tr>
<td>graduate</td>
<td>0.797</td>
<td>61.120</td>
</tr>
<tr>
<td>uninsured</td>
<td>0.039</td>
<td>7.880</td>
</tr>
<tr>
<td>earnings</td>
<td>0.000</td>
<td>-0.290</td>
</tr>
<tr>
<td>year2001</td>
<td>0.000</td>
<td>-0.030</td>
</tr>
<tr>
<td>year2002</td>
<td>-0.006</td>
<td>-0.530</td>
</tr>
<tr>
<td>year2003</td>
<td>0.032</td>
<td>2.930</td>
</tr>
<tr>
<td>year2004</td>
<td>-0.041</td>
<td>-3.570</td>
</tr>
<tr>
<td>year2005</td>
<td>-0.058</td>
<td>-5.040</td>
</tr>
<tr>
<td>year2006</td>
<td>-0.038</td>
<td>-3.070</td>
</tr>
<tr>
<td>_cons</td>
<td>-0.653</td>
<td>-22.340</td>
</tr>
</tbody>
</table>