


WHAT WILL THIS WORKSHOP BE ABOUT?

Goals
• Identify main challenges encountered in conducting pooled analyses for the IPEN Adult 

study (multi-site study aiming to examine the strength and shape of environment-physical 
activity relationships)

• Present analytical approaches that can be applied to any study facing similar complex 
problems

Learning objectives (learn …)
• Fundamentals of models appropriate for correlated, non-normally distributed, non-linearly 

related variables (Generalized Additive Mixed Models -> GAMMs)
• How to choose the most appropriate non-normal error distribution
• How to interpret results from various GAMMs and report findings in a scientific article
• How to explore associations of environmental characteristics with physical activity at the 

within-site and between-site levels



OVERVIEW OF TODAY’S WORKSHOP 

1. Working groups (4-5 people) (10 min)

2. Introduction to the IPEN studies: analytical challenges (15 min)

3. CHALLENGE 1: dealing with correlated data (30 min)

4. CHALLENGE 2: dealing with non-normally distributed data (35 min)

5. BREAK (15 min)

6. CHALLENGE 2: dealing with non-normally distributed data (30 min)

7. CHALLENGE 3: dealing with curvilinear relationships (20 min)

8. CHALLENGE 4 : estimating within- and between-site effects (15 min)

9. Wrapping up (10 min)



WORKING GROUPS (4-5 PEOPLE)

An IPEN 
investigator

Stats 
‘guru’

At least 
1 laptop 
with R



INTRODUCTION TO

Cross-sectional, observational, multi-site study adopting a two-stage stratified 
sampling strategy

Regression?



INTRODUCTION TO

17 Cities 

16 - 48  Neighborhoods

16 – 261 Administrative units

Residents

Clusters or independent variable

Clusters; unequal probability sampling

Clusters

IPEN PROJECT = COMPLEX

Stratification by SES and walkability

Cross-sectional, observational, multi-site study adopting a two-stage stratified 
sampling strategy



CHALLENGE 1

Correlated data ... Correlated residuals
Violation of independence assumption
Consequences

Incorrect standard errors
Clustering primarily affects variance or precision of estimation 
rather than bias (unless individual-level associations between 
factors measured at the individual level differ from those at the 
area-level)

BAD NEWS: can’t use “standard” OLS regression models, 
generalized linear models, generalized additive models ... 



CHALLENGE 2

Non-normally distributed data & heteroscedasticity

• Positive skew

• A lot of zero values ...
• Leisure-time physical activity
• Walking for transport

Walking for transport (min/wk)

Fr
eq

ue
nc

y

0 500 1000 1500 2000

0
50

10
0

20
0

BAD NEWS: can’t use regression models assuming normally 
distributed residuals ...



CHALLENGE 3

Non-linear relationships

BAD NEWS: can’t simply enter ‘untransformed’ predictors in the 
regression models ...



CHALLENGE 4

Between- and within-city associations
• The strength of these may differ 

• Need to assess within- and between-city effects

jijij XXY 210 βββ ++=
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CHALLENGE 4

Between- and within-city associations
• The strength of these may differ 

• Need to assess within- and between-city effects

BUT

IPEN “sampled” only 17 cities
Cities are not truly “random” factors
Regression models encompass many predictors

BAD NEWS: we cannot easily distinguish between- and within-city 
effects ... 

jijij XXY 210 βββ ++=
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CHALLENGE 1: 
DEALING WITH CORRELATED DATA

17 Cities 

16 - 48  Neighborhoods

16 – 261 Administrative units

Residents

Clusters (random effects) or independent variable (fixed effects)

Clusters (unbalanced) ; unequal probability sampling

Clusters (unbalanced)

Stratification by SES and walkability

Cross-sectional, observational, multi-site study adopting a two-stage stratified 
sampling strategy

Questions:
What sources of dependency do we have? How many?
Do we model these sources of dependency as random or fixed factors?
How do we model unequal probability sampling of neighborhoods?



‘CANDIDATE’ REGRESSION MODELS

1. Generalized linear models with robust standard errors?

Statistically inefficient

2. Generalized estimating equations?
Not appropriate with highly unbalanced clusters

3. Linear mixed models? 
Yes, if you expect normally-distributed errors and linear associations

4. Generalized linear mixed models (aka multilevel generalized linear models)? 
Yes, if you expect linear associations

5. Generalized additive mixed models? 
Yes, if you do not expect any of the above.



THE ‘MIXED’ IN GENERALIZED ADDITIVE MIXED 
MODELS: DEALING WITH CORRELATED DATA

… also referred to as “hierarchical” 
… OR “multilevel”
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Random intercept model

THE ‘MIXED’ IN GENERALIZED ADDITIVE MIXED 
MODELS: DEALING WITH CORRELATED DATA
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random slope model

THE ‘MIXED’ IN GENERALIZED ADDITIVE MIXED 
MODELS: DEALING WITH CORRELATED DATA



GAMMS IN ‘R’

Association of perceived residential density with weekly minutes of walking for recreation 



GAMMs in R - dealing with correlated data
Setting up GAMMs in ‘R’ (random intercept)
Assuming normally-distributed residuals and linear relationships

‘mgcv’ library

Model 1 Model 2

Outcome I_LeiWlkPA I_LeiWlkPA

Predictor GN_ResidDen GN_ResidDen

Design factor fSES fSES

Covariates Age_final, fgender, fjob, 
feducation, fmarital

Age_final, fgender, fjob, 
feducation, fmarital

Administrative units Random factor (cluster) Random factor (cluster)

Cities Random factor (City) Fixed factor (fcity)

Model.1<-(gamm(I_LeiWlkPA ~ fSES + fgender + feducation + fjob + fmarital + 
Age_final + GN_ResidDen, data=complete, random=list(City=~1, cluster=~1)))

Model.2<-(gamm(I_LeiWlkPA ~ fSES + fgender + feducation + fjob + fmarital + 
Age_final + fcity + GN_ResidDen, data=complete, random=list(cluster=~1)))
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MODEL 1 (lme component)
Linear mixed-effects model fit by maximum likelihood
Data: strip.offset(mf) 

AIC      BIC   logLik
175745 175834.6 -87860.5

Random effects:
Formula: ~1 | City

(Intercept)
StdDev:     55.2626

Formula: ~1 | cluster %in% City
(Intercept) Residual

StdDev:    18.39642 216.2723

Fixed effects: y ~ X - 1 
Value Std.Error DF   t-value p-value

X(Intercept)                            61.19865 16.933450 12538  3.614068  0.0003
XfSESHigh 0.56017  4.605586 12538  0.121628  0.9032
XfgenderFemale -3.53170  3.923731 12538 -0.900086  0.3681
XfeducationHigh school or some college  11.40928  6.122696 12538  1.863440  0.0624
XfeducationCollege or more               0.69183  6.390216 12538  0.108264  0.9138
Xfjob1                                 -20.40180  4.582352 12538 -4.452256  0.0000
XfmaritalWith partner                   -6.18400  4.084596 12538 -1.513980  0.1301
XAge_final 1.48872  0.159747 12538  9.319209  0.0000
XGN_ResidDen 0.14735  0.026174 12538  5.629545  0.0000



MODEL 1 (gam component)
Family: gaussian
Link function: identity 

Formula:
I_LeiWlkPA ~ fSES + fgender + feducation + fjob + fmarital + 

Age_final + GN_ResidDen

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)                            61.19865   16.93345   3.614 0.000303 ***
fSESHigh 0.56017    4.60559   0.122 0.903195    
fgenderFemale -3.53170    3.92373  -0.900 0.368091    
feducationHigh school or some college  11.40928    6.12270   1.863 0.062423 .  
feducationCollege or more               0.69183    6.39022   0.108 0.913788    
fjob1                                 -20.40180    4.58235  -4.452 8.57e-06 ***
fmaritalWith partner                   -6.18400    4.08460  -1.514 0.130055    
Age_final 1.48872    0.15975   9.319  < 2e-16 ***
GN_ResidDen 0.14735    0.02617   5.630 1.84e-08 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

R-sq.(adj) =  0.0133  Scale est. = 46774     n = 12919
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MODEL 2 (gam component)
Family: gaussian
Link function: identity 

Formula:
I_LeiWlkPA ~ fSES + fgender + feducation + fjob + fmarital + 

Age_final + fcity + GN_ResidDen

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)    

(Intercept)                            67.70935   11.26873   6.009 1.92e-09 ***
fSESHigh 0.42056    4.49791   0.094 0.925506    
fgenderFemale -3.56512    3.92437  -0.908 0.363655    
feducationHigh school or some college  11.19197    6.12782   1.826 0.067810 .  
feducationCollege or more               0.58783    6.39424   0.092 0.926754    
fjob1                                 -20.40682    4.58240  -4.453 8.53e-06 ***
fmaritalWith partner                   -6.15160    4.08382  -1.506 0.132006    
Age_final 1.49978    0.15971   9.390  < 2e-16 ***
fcityGhent, Belgium                   -46.65139    9.22375  -5.058 4.30e-07 ***
…
fcityPamplona, Spain                   97.99763   10.84807   9.034  < 2e-16 ***
…
fcityBaltimore, USA                   -22.83341    9.98015  -2.288 0.022161 *  
GN_ResidDen 0.14783    0.02639   5.601 2.18e-08 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

R-sq.(adj) =  0.0587  Scale est. = 46763     n = 12919



ARE THESE MODELS VALID? DIAGNOSTICS …

NO



ARE THESE MODELS VALID? DIAGNOSTICS …



CHALLENGE 2
Non-normally distributed data & heteroscedasticity

• Positive skew

• A lot of zero values ...
• Leisure-time physical activity
• Walking for transport



WHAT CAN WE DO? 

Box Cox transformation – helps 
make the  data normal



PROBLEMS WITH TRANFORMATIONS

1. Sometimes they do not work and produce more biased results than non-transformed 

data

2. In most cases, they make interpretation of results more difficult

3. Difficulties to communicate findings to gatekeepers and policy makes

4. Difficulties in comparing findings across studies

5. Do not capitalize on the ‘natural’ distribution of the data resulting in loss of power

6. Sometimes a transformation can address only one of the problems ... and make the 

other problems worse …



EXAMPLE

The between-gender difference in the Box-Cox 
transform of weekly minutes of walking for 
transportation was not significant. A unit 
increase on the scale of land-use mix was 
associated with a 1.82 (95% CI: 0.83, 2.81) 
increase in the Box-Cox transform of weekly  
minutes of walking for transportation. 



ANOTHER SOLUTION!! 

GENERALIZED … MODELS 

WHAT ARE THEY?



THE ‘GENERALIZED’ IN GENERALIZED ADDITIVE 
MIXED MODELS: DEALING WITH “NON-NORMAL” 
RESIDUALS



G…Ms: WHAT ARE THEY? A BIT OF THEORY

In a G...M, the outcome variable, Y, is assumed to be generated from a particular 
distribution in the exponential family, a large range of probability distributions that 
includes the Normal, binomial and Poisson distributions, among others. The mean, μ, 
of the distribution depends on the independent variables, X, through:

)()( 1 βμ XgYE −==

• E(Y) is the expected (mean) value of Y

• Xβ is the linear predictor of unknown parameters (regression coefficients) β

• g is the link function

The above means that:

βμ Xg =)(



G…Ms: WHAT ARE THEY? MORE THEORY …

G...Ms are made up of 3 components: 

1. Random Component (Variance Function) 

Identifies dependent variable (Y) and its probability distribution

2. Systematic Component  

Identifies the set of explanatory variables (X1,...,Xk)

3. Link Function  

Identifies a function of the mean that is a linear function of the explanatory variables 



RANDOM COMPONENT or VARIANCE FUNCTION

Rather than transforming the data to get approximate normality, 

G…Ms expand the allowed distributions for untransformed 

outcomes.

Normal

Binomial

Negative Binomial

Poisson

Gamma



RANDOM COMPONENT or VARIANCE FUNCTION

Gamma

Normal



HOW TO PICK THE RANDOM COMPONENT??



LINK FUNCTIONS

In classical linear model, the systematic effects of the explanatory variables are 
assumed to combined additively.

In G…Ms, this linear combination is also assumed and produces the linear predictor η.

E.g., with log-linear models in which the effects are assumed to be multiplicative on the 
μ (original) scale, the link function is log : η = log (μ) produces effects that combine 
additively on the η scale.

Note that the individual data are not transformed to achieve linearity, the means μ are 
transformed. 

The choice of the variance function to model the random component is entirely separate 
from the choice of link function to achieve linearity of the systematic effects. Thus, a 
single transformation is not longer trying to do several jobs.

Link function

... identity ... logarithmic ... logit ... others ... identity...



LINK FUNCTIONS



HOW TO PICK THE LINK FUNCTION … (SOMEWHAT ARBITRARY)



Interpretation of regression coefficients from various G…Ms

Identity link function and Normal or Gamma distributions:

Amount of change in outcome (in its original units) followed by 1 unit increase in the predictor

Logit link function and Binomial distribution: (antilog of regression coefficients)

Odds ratio – proportional change in odds followed by 1 unit increase in the predictor (>1 = 
increase or positive association; <1 = decrease or negative association)

Log link function and Normal or Gamma distribution: (antilog of regression coefficients)

Proportional change in outcome followed by 1 unit increase in predictor (>1 = increase or positive 
association; <1 = decrease or negative association)

Log link function and Poisson or Negative Binomial: (antilog of regression coefficients)

Proportional change in outcome followed by 1 unit increase in predictor (>1 = increase or positive 
association; <1 = decrease or negative association)

Sometimes called incidence risk ratio (IRR) . E.g., IRR=2 means the outcome is twice as prevalent 
if the associated predictor is increased by one. 



EXAMPLE … LET’S GO BACK THE DATA ON WEEKLY 
MINUTES OF WALKING FOR RECREATION

STEP 1: CHOOSING A VARIANCE FUNCTION

• Data can only take positive values (0 or more)

• Recorded data are discrete – minutes per week; but , in reality, are continuous 
(time is a continuous variable) 

• Data are positively skewed

• The variance of the outcome increases with its mean, the variance is a larger 
than the mean and squared mean

stats | I_LeiWlkPA
---------+----------

mean |  114.8585
sd |  224.0988

variance |  50220.27
--------------------

Mean^2  13192.48



EXAMPLE … LET’S GO BACK THE DATA ON WEEKLY 
MINUTES OF WALKING FOR RECREATION

STEP 1: CHOOSING A VARIANCE FUNCTION

Gamma
Negative Binomial



EXAMPLE … LET’S GO BACK THE DATA ON WEEKLY 
MINUTES OF WALKING FOR RECREATION

STEP 2: CHOOSING A LINK FUNCTION

• Data can only take positive values (0 or more)

• Our variance functions are Gamma or Negative Binomial 

Identity?

Log?
or

Log: safer as it cannot produce negative values and stabilizes variance

Identity: easier to interpret and is unlikely to fit the data well

Conclusion: try log



EXAMPLE … GO BACK THE DATA ON WEEKLY MINUTES 
OF WALKING FOR RECREATION

Setting up GAMMs in ‘R’

Gamma variance and log link function

Gamma.log <- gamm(I_LeiWlkPA+1 ~ fSES + fgender + feducation + fjob + fmarital + Age_final + fcity
+ GN_ResidDen, data=data, family=Gamma(link="log"), random=list(cluster=~1))

Negative Binomial variance and log link function

NBin.log <- gamm(I_LeiWlkPA+1 ~ fSES + fgender + feducation + fjob + fmarital + Age_final + fcity + 
GN_ResidDen, data=data, family=negative.binomial(1), random=list(cluster=~1))

family=

link=



EXAMPLE … GO BACK THE DATA ON WEEKLY MINUTES 
OF WALKING FOR RECREATION

Setting up G…Ms in R … few more details

Family name (default link function)

binomial(link = "logit")

gaussian(link = "identity")

Gamma(link = "inverse")

poisson(link = "log")

quasi(link = "identity", variance = "constant")

quasibinomial(link = "logit")

quasipoisson(link = "log")

family =

link =



MODEL SELECTION … WHICH MODEL IS BEST?

Comparing models with different link functions but equal random and systematic 
components

Consider the AIC or BIC: the model with the smaller values for these parameters are the preferred 
models

Comparing models with different variance functions and same systematic and link 
components

Consider the AIC or BIC: the model with the smaller values for these parameters are the preferred 
models.

AIC Akaike Information Criterion
measure of model fit; index of information lost 
associated with a model; includes a penalty for 
increase in parameters (e.g., predictors)

BIC Bayesian Information Criterion
As AIC but with greater penalty for increase in 
parameters



MODEL 2 … WALKING FOR RECREATION (cities as fixed effects)
GAMMA Variance function
Linear mixed-effects model fit by maximum likelihood
Data: data 

AIC      BIC    logLik
51739.5 51940.97 -25842.75

...
Fixed effects: list(fixed) 

Value  Std.Error DF  t-value p-value
XGN_ResidDen 0.001087 0.00022813 12475  4.76277 0.0000

NEGATIVE BINOMIAL Variance function
Linear mixed-effects model fit by maximum likelihood
Data: data 

AIC      BIC    logLik
51737.25 51938.71 -25841.63

…
Fixed effects: list(fixed) 

Value  Std.Error DF  t-value p-value
XGN_ResidDen 0.001086 0.00022791 12475  4.76547  0.0000

TASK 1:
Set up and run a script with Poisson variance function? Is the model better than the above?

TASK 2:
Calculate the antilog of the regression coefficient and 95% CIs. Explain what you’ve found.



DIAGNOSTICS … LOOKING AT PLOTS … ‘R’ N
egative B
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A STEP FURTHER … BUMPING INTO NAUGHTY NAUGHTS …



Two-part models

They deal with outcome variables having more zeros than allowed by the 
distributional assumptions of Gaussian, Gamma, Poisson or Negative Binomial 
GAMMs.

They partition data into two groups:

1. A binary process that generates two values (zero vs. non-zero values)

This can be modelled using a GAMM with binomial variance function and logit
link function (… as a logistic regression)  

2. Non-zero process (modelling non-zero values)

A zero-truncated model based on an appropriate GAMMs for count or continuous 
data (Poisson, Negative Binomial, Gaussian or Gamma; with identity or log link 
functions)

A STEP FURTHER … DEALING WITH NAUGHTY NAUGHTS …



SETTING UP TWO-PART MODELS IN ‘R’

TASKS

1. Create new binary outcome variable

complete$LeiWlkDich <- ifelse(I_LeiWlkPA == 0, 0, 1) 

2. Model it using a GAMM with binomial variance and logit link functions

3. Find an appropriate GAMM model for non-zero values of the outcome 
variable



OUTPUT OF TWO-PART MODEL IN ‘R’ (1)
BINARY PROCESS

Linear mixed-effects model fit by maximum likelihood
Data: data 

AIC      BIC    logLik
55891.08 56092.55 -27918.54

Random effects:
Formula: ~1 | cluster

(Intercept)  Residual
StdDev:   0.2716545 0.9932228

Fixed effects: list(fixed) 
Value  Std.Error DF   t-value p-value

XGN_ResidDen 0.0008823 0.00027309 12475  3.230821  0.0012

-------------------------------------------------------
exp(Dichot.model$lme$coefficients$fixed["XGN_ResidDen"])

XGN_ResidDen
1.000883 ODDS of Engaging in recreational walking



OUTPUT OF TWO-PART MODEL IN ‘R’ (2)

NON-ZERO PROCESS

Linear mixed-effects model fit by maximum likelihood
Data: data 

AIC      BIC    logLik
22958.31 23144.39 -11452.15

Random effects:
Formula: ~1 | cluster

(Intercept) Residual
StdDev:   0.0938119 1.161616

Fixed effects: list(fixed) 
Value  Std.Error DF  t-value p-value

XGN_ResidDen 0.000731 0.00018454 6899  3.95982  0.0001

-------------------------------------------------------
exp(NZero.model$lme$coefficients$fixed["XGN_ResidDen"]) 

XGN_ResidDen
1.000731 How do you interpret this?



IS THE MODEL VALID? DIAGNOSTICS …

Non-zero process



CHALLENGE 3

Non-linear relationships

BAD NEWS: can’t simply enter ‘untransformed’ predictors in the 
regression models ...



IS RESIDENTIAL DENSITY CURVILINEARLY RELATED TO 
WALKING FOR RECREATION? 

How do we estimate this?

• Apply a smoothing model with the odds of walking for recreation as the 
outcome and Residential Density as a smoother (semi-parametric 
function)

• Thin plate regression splines 
• Can smooth any number of covariates
• No knots needed
• Other optimal statistical properties

ijjjijjij CitiesSESDensityRfconsWalkingOdds (cov))()().(. 4320 ββββ ++++=

THE ‘ADDITIVE’ IN GENERALIZED ADDITIVE MIXED 
MODELS: DEALING WITH CURVILINEARITY



Previous model
‘Linear’ relationship

Family: binomial 
Link function: logit

Formula:
LeiWlkDich ~ fSES + fgender + feducation + fjob + fmarital + 

Age_final + fcity + GN_ResidDen

Parametric coefficients:
Estimate Std. Error t value Pr(>|t|)

GN_ResidDen 0.0008823  0.0002731   3.231 0.001237 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

R-sq.(adj) =  0.0815  Scale est. = 0.98649   n = 12856

IS RESIDENTIAL DENSITY CURVILINEARLY 
RELATED TO WALKING FOR RECREATION? 



New model
Curvilinear relationship

Family: binomial 
Link function: logit

Formula:
LeiWlkDich ~ fSES + fgender + feducation + fjob + fmarital + 

Age_final + fcity + s(GN_ResidDen)

Approximate significance of smooth terms:
edf Ref.df F  p-value    

s(GN_ResidDen) 2.866  2.866 10.48 1.54e-06 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

R-sq.(adj) =  0.0836  Scale est. = 0.98725   n = 12856

IS RESIDENTIAL DENSITY CURVILINEARLY 
RELATED TO WALKING FOR RECREATION? 



IS RESIDENTIAL DENSITY CURVILINEARLY 
RELATED TO WALKING FOR RECREATION? 

plot(Dichot.model2$gam, las=1, ylab="Odds of walking for recreation", se=TRUE, 
xlab="Perceived residential density", trans=function(x)exp(x), 
shift=mean(predict(Dichot.model2$gam)), page=1)



… TEST CURVILINEARITY OF RELATIONSHIP FOR 
THE NON-ZERO VALUES NEGATIVE BINOMIAL 

MODEL …

… NOW IT’S YOUR TURN …



CHALLENGE 4

Between- and within-city associations
• The strength of these may differ 

• Need to assess within- and between-city effects

BUT

IPEN “sampled” only 17 cities
Cities are not truly “random” factors
Regression models encompass many predictors

BAD NEWS: we cannot easily distinguish between- and within-city 
effects ... 

jijij XXY 210 βββ ++=
Within-city Between-city



CHALLENGE 4

Between- and within-city associations

BRAIN STORMING EXERCISE 

What can we do about this?



THANK YOU!
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