Spatial Profiling

A latent profile analysis of obesogenic activity spaces and adult BMI

Malia Jones, Jimi Huh, Genevieve Dunton, Donna Spruijt-Metz, and Mary Ann Pentz

March 12, 2014

Active Living Research, 2014

Background

- Built environment may contribute to obesity by influencing costs of healthy choices

 - Fresh foods → lower weight
- Obesogenic factors in the built environment are often co-located

Unresolved Methodological Issues

- Appropriate operational definition of "neighborhood"
- How to deal with clusters of co-located factors in the environment

Solution 1: Activity Spaces

- What is the appropriate operational definition of "neighborhood"?
 - Most people do not spend all their time at home
 - Is home address the best measure of a person's geospatial exposure?
- → We use "activity spaces"

Activity Spaces

The unique set of places where a person routinely spends time.

"Everywhere I've Been" © 2012 Aaron Parecki

Solution 2: Latent Variable Modeling

- How can we deal with multiple co-located factors in the neighborhood simultaneously?
 - Reductive strategies ignore clustering, interactive effects
- → We use latent profile modeling

Latent Profile Analysis

Finds latent "types" of areas where obesogenic features are co-located in space.

Methods

- 460 adults from the Healthy PLACES study, their home addresses, and their childs' school addresses
- 7 Obesogenic features of neighborhood entered into latent profile analysis
 - Index of greenness
 - 2. Parks/square mile
 - 3. % of total land commercial
 - 4. % of land residential
 - 5. Ped/cyclist accidents
 - 6. Intersections/square mile
 - 7. Fast food restaurants/square mile

2 measures of neighborhood

1-mile buffers around respondents' home address

1-mile buffers around the line connecting respondent homes and their childs' school

Results of LPA for Residential Areas

Mean BMI by Profile Membership

27.7 29.2 27.7 32.0 28.7 30.1

Results of LPA for Activity Spaces

29.4

Mean BMI by Profile Membership

28.6 30.2 27.6

Multivariate Results

	LPA for Residential Areas		LPA for Activity Spaces	
	Unadjusted	Adjusted ^a	Unadjusted	Adjusted ^a
P1	-4.29 *	-2.85		
P2	-2.55	-1.21		
P3	-4·33 *	-2.69		
P4	Ref	Ref		
P5	-3.28	-1.77		
P6	-1.89	-1.21		
P1			-1.63	-0.91
P2			Ref	Ref
Р3			-2.66 **	-1.69
P4			-0.79	-0.04
R-2-a	0.02	0.03	0.02	0.03

^a Adjusted models control for age, gender, and education.

Discussion

- Activity spaces did not perform better than residential areas
- LPA did identify distinct contextual profiles (or "types" of neighborhoods)
- These were predictive of BMI in expected directions in unadjusted models
 - Compared to a conventional index approach, LPA profiles explained marginally more BMI variance
- Unobserved factors more strongly predict adult BMI than anything in our models

Strengths & Limitations

STRENGTHS

- We used a unique method of identifying co-located clusters of obesogenic features
- LPA models converged and identified high-risk areas for individual-level obesity

LIMITATIONS

- Our activity space measure is a poor proxy for where people really go
- Limited sample size = limited ability to find significant results*
- Overall, we explained little individual level variation in BMI

Next Steps

- Audience for this work?
- GPS data to identify "true" activity spaces

Thank you!

Extra slides

Characteristics of places used in LPA

		Mean (median)	SD
N of households		460	
NDVI	A measure of live, green vegetation.	-0.11	0.11
% Residential	A measure of land use.	33%	14%
Land Use			
% Commercial	A measure of land use.	5%	4%
Land Use			
Pedestrian/Bike	Count of traffic accidents between 2000 and	14	16
Accidents per	2008 which involved a pedestrian or cyclist, per		
square mile	square mile within the buffer area. #		
Fast Food outlets	Count of fast food outlets per square mile within	0.7	5
per square mile	the buffer area.		
Parks per square	Count of parks per square mile within the buffer	0.5	3
mile	area.		