

T-MAP: From Niche to Norm

A Practitioner-Rooted Research Project

Keith Laughlin President, Rails-to-Trails Conservancy Active Living Research Conference March 8, 2014

My Role on the Panel

To create advocacy context for the research to follow

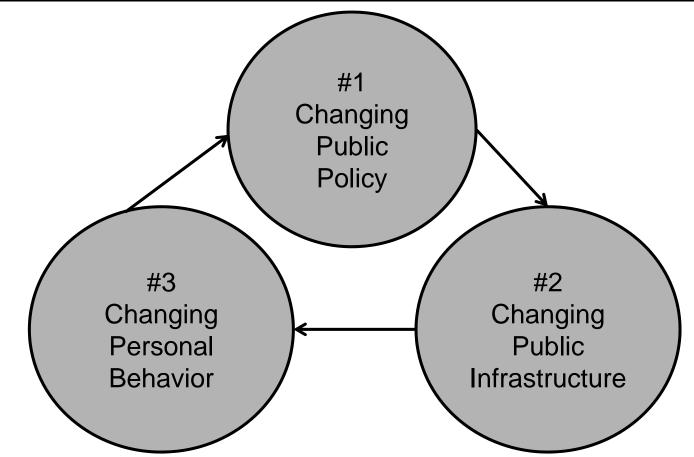
RTC 101

- Founded in 1986
- 150,000 Members and supporters
- HQ in DC with 4
 Regional Offices
- 40+ Staff

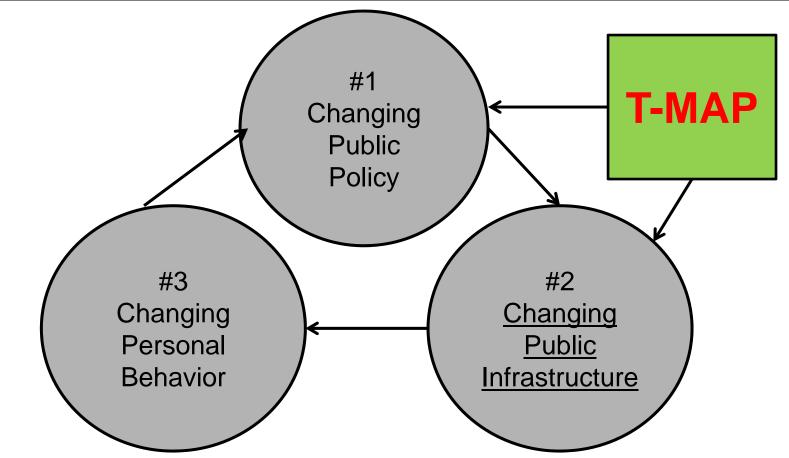
Our Mission

"To create a nationwide network of trails from former rail lines and connecting corridors...

...to build healthier places for healthier people."


- Adopted Oct 2004

"Health" in Multiple Dimensions


Improving the...

- ...economic and environmental health of a place
- ... personal health of its people
- ... social health of a community

Our Methods: Catalyzing Change in 3 Spheres

Our Methods: Catalyzing Change in 3 Spheres

Shameless Plug: Sphere #1: Changing Policy

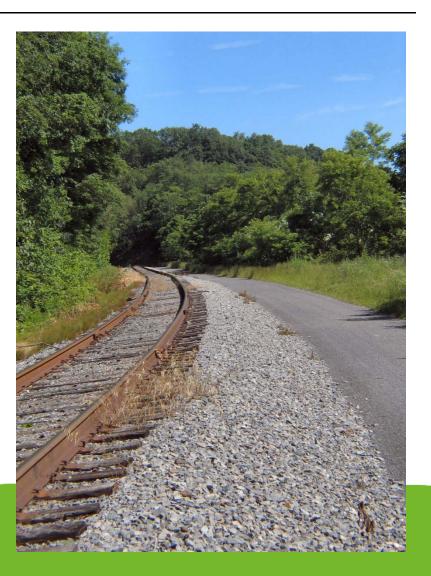
Safe Routes Everywhere_FINAL_low res_011514.pdf - Adobe Reader

<u>E</u>dit <u>V</u>iew <u>W</u>indow <u>H</u>elp

Partnership for **Active Transportation**

Safe Routes to Everywhere

Building Healthy Places for Healthy People Through Active Transportation Networks



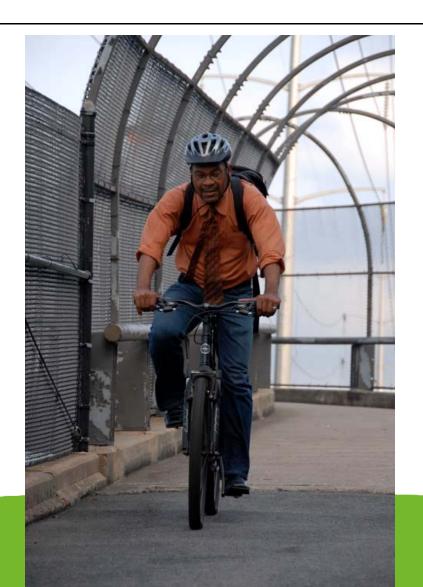
Looking Back

Past success:

- 1986: 250 miles
- 2014: >21,000 miles

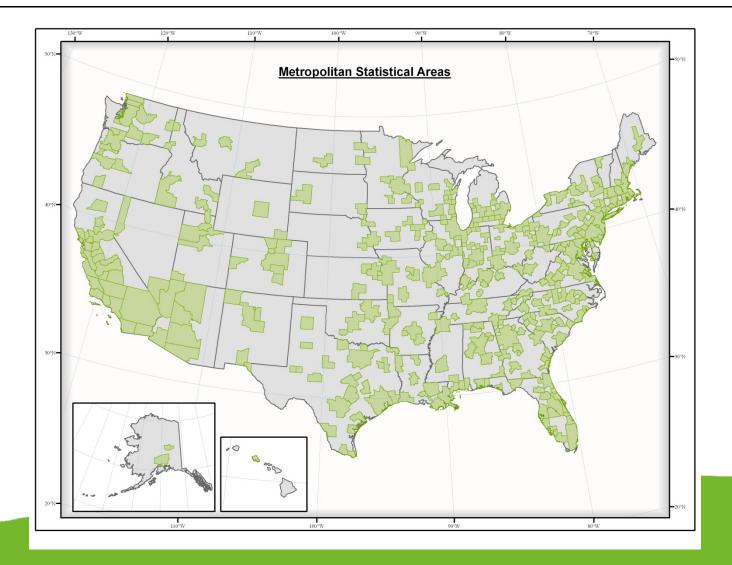
Looking Ahead: Our BHAG

Our Big, Hairy, Audacious Goal: By 2020, 90 percent of Americans will live within three miles of a local trail system.

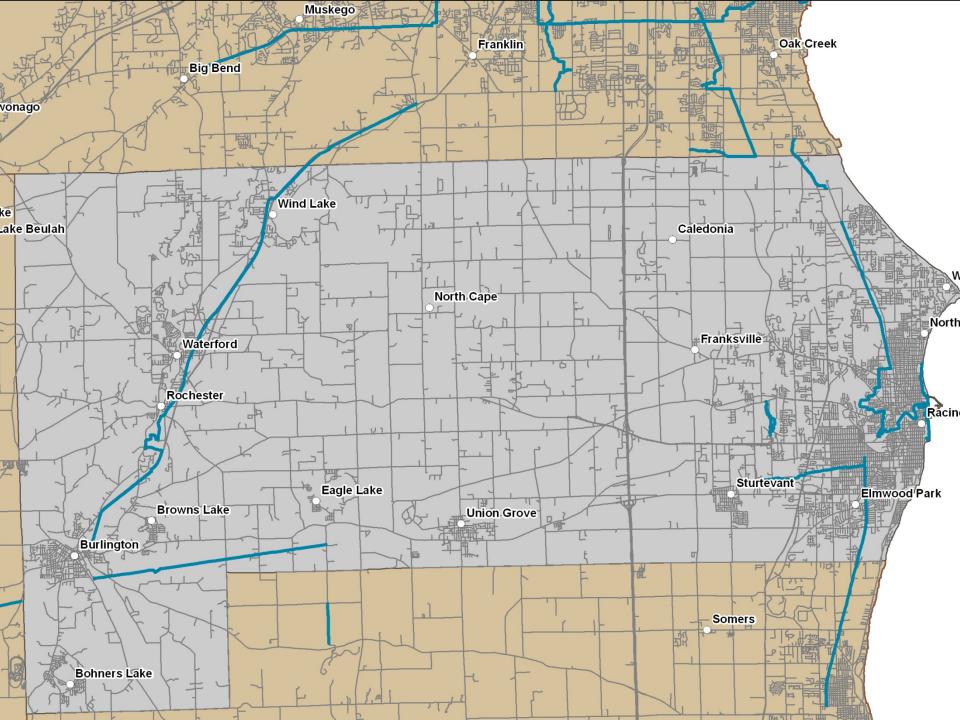

Measuring the BHAG: Creating Geospatial Data Base

- Since 2006 we have mapped
 25,500 miles of multi-purpose trail in the US
- Overlay with Census data to measure proximity

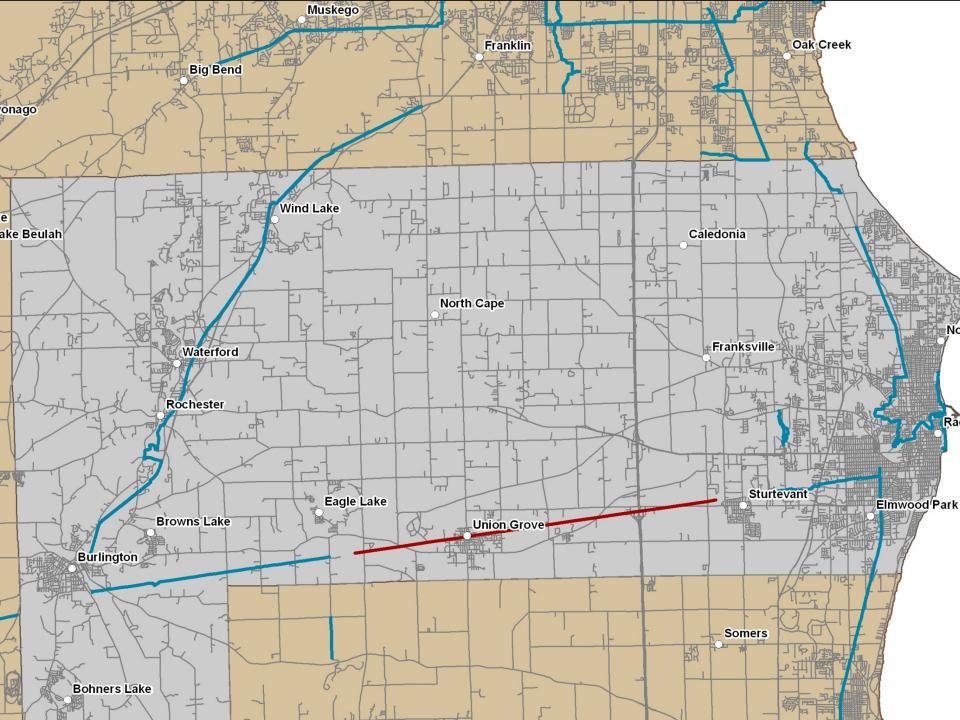
National Progress on BHAG


- Dec. 2009: 25.5%
 14,700 miles of trail
- Dec. 2010: 32.5%
 17,500 miles of trail
- Dec. 2011: 39.8%
 21,700 miles of trail
- Dec. 2012: 42.2%
 23,500 miles of trail
- Dec. 2013: 44.0%
 25,200 miles of trail

State-Level Analysis: 2013


1. District of Columbia (100%) 2. Rhode Island (75%) 3. Colorado (70%) 4. Washington (68%) 5. Illinois (66%) 6. California (62%) 7. New York (58%) 8. Nebraska (58%) 9. Oregon (58%) 10. Wisconsin (56%)

MSA-Level Analysis


MSA-Level Analysis

- 1. Rockford, IL (93%)
- 2. San Francisco-Oakland-Fremont, CA (92%)
- 3. San Jose-Sunnyvale-Santa Clara, CA (92%)
- 4. Boulder, CO (91%)
- 5. Lincoln, NE (90%)
- 6. Racine, WI (90%)
- 7. Milwaukee-Waukesha-West Allis, WI (90%)
- 8. Denver-Aurora-Broomfield, CO (88%)
- 9. Des Moines-West Des Moines, IA (85%)
- 10. Fort Collins-Loveland, CO (85%)

RTC's Early Warning System

- On January 28, 2014, the Soo Line filed a notice to abandon 10.6 miles of active line between Sturtevant and Kansasville, WI.
- We notified all potentially interested parties in Wisconsin
- Wisconsin state DNR intends to rail bank this segment
- The map now looks like this...

Inescapable Conclusion

- Measuring proximity is useful, but limited
- It does not address equity
- It does not ensure usage
- <u>Accessibility</u> and <u>connectivity</u> are crucial factors in determining if infrastructure change supports behavior change
- **Key Question:** Does infrastructure effectively connect people and places?

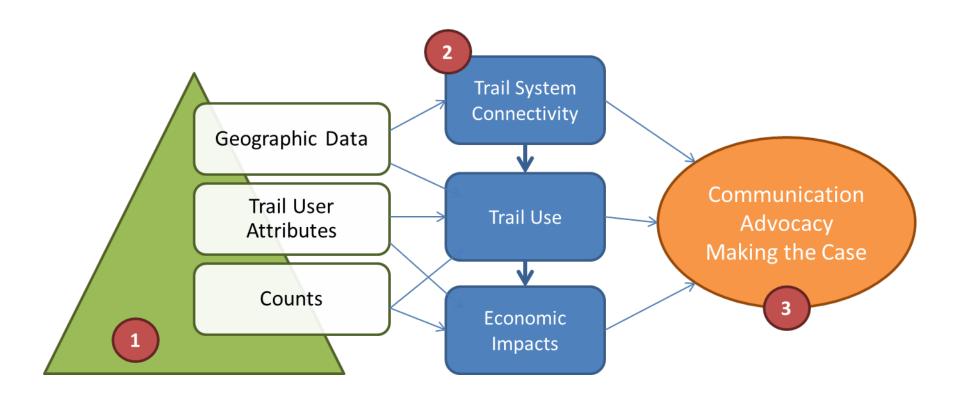
The Genesis of T-MAP

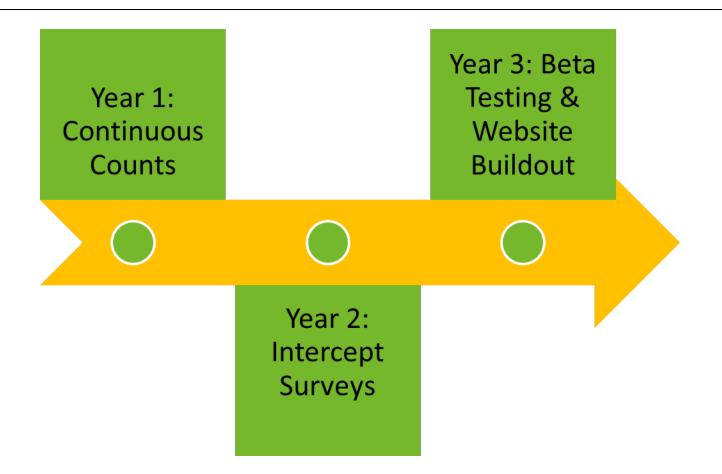
- Was NOT created to develop "evidence"
- Emerged last summer from a dialogue with Tracy about creating "TrailScore" to measure trail system connectivity
- I want practical tools to change the world
- Tracy, Greg & Michael want to do rigorous cutting edge peer reviewed research that will change the world

Conclusion: The Opportunity

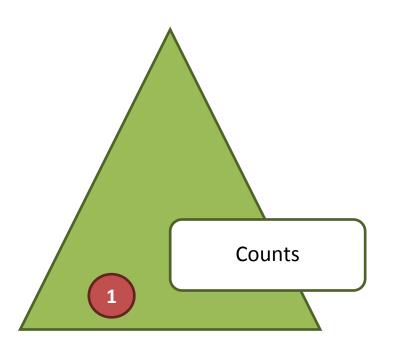
- \$7 billion in federal investment since 1991 has built 25,000 miles of multi-purpose trails across the American landscape
- Approaching a tipping point: relatively small investments to make connections to create networks will cause usage to soar
- T-MAP will ensure and demonstrate that future investment delivers a high ROI

Questions?

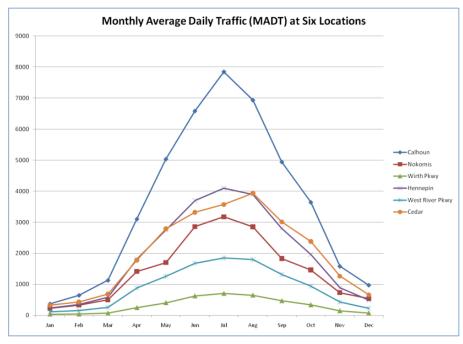

rails-to-trails conservancy

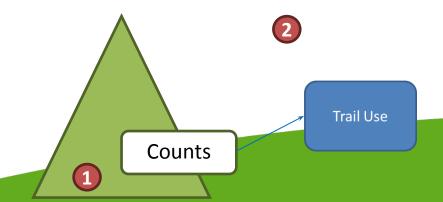

T-MAP Research Design

Tracy Hadden Loh, Ph.D. Active Living Research 3/9/14

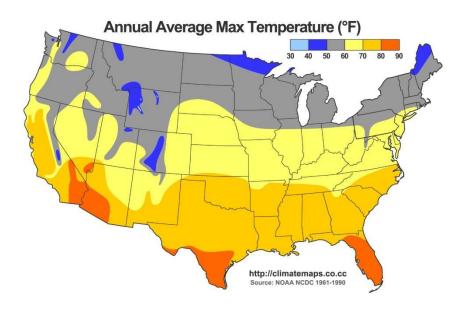

T-MAP by Component

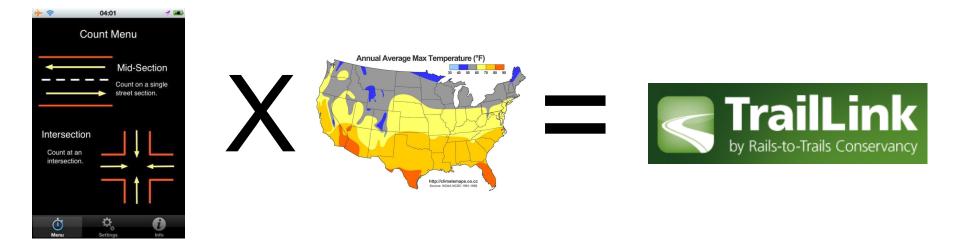
Timeline



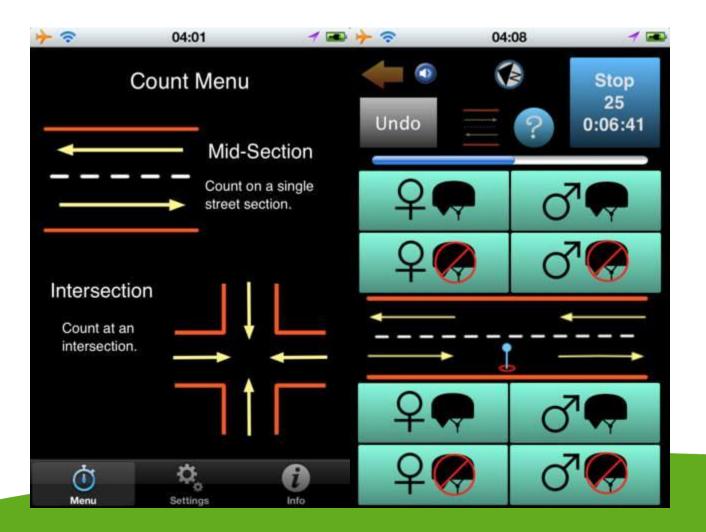

Year One Data Collection: Counts

Trail Use Research Questions

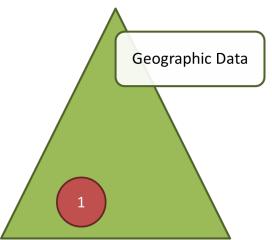



- How many visits does my trail get per year?
- What is the peak trail use on my facility?
- What is the modal distribution of my users?

Year One Deliverables: Factors


- Separate for bicyclists and pedestrians
- For all weather zones of the US
- Large sample

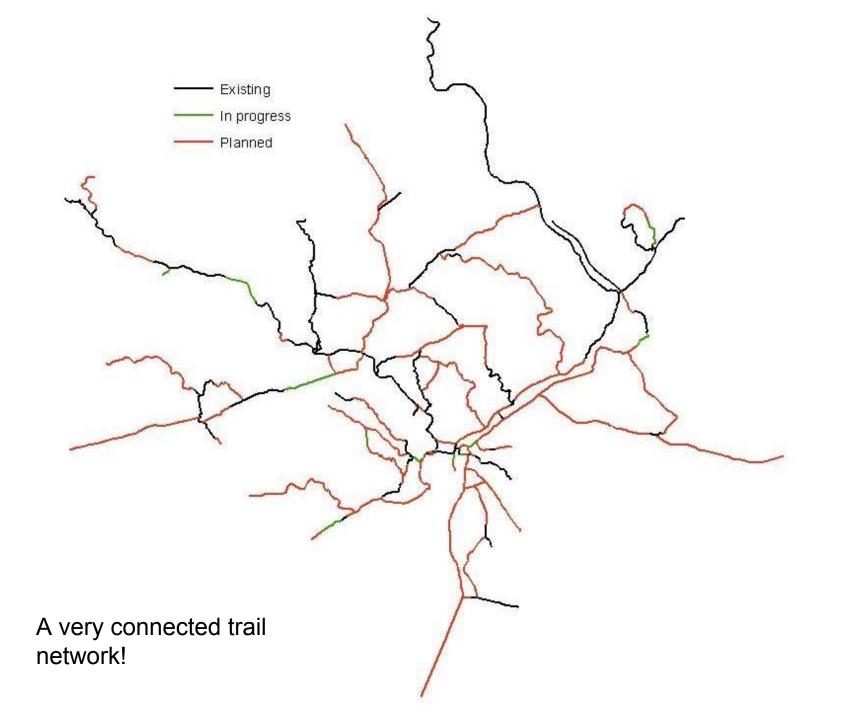
Year One Deliverables: Calculator

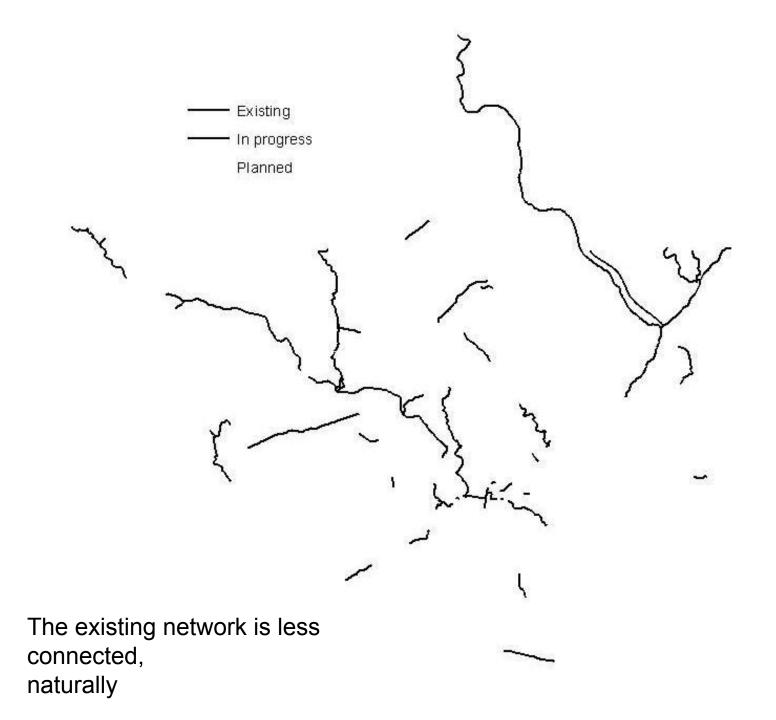


Year One Deliverables: RTCounts!

Year One Data Collection: Trail GIS

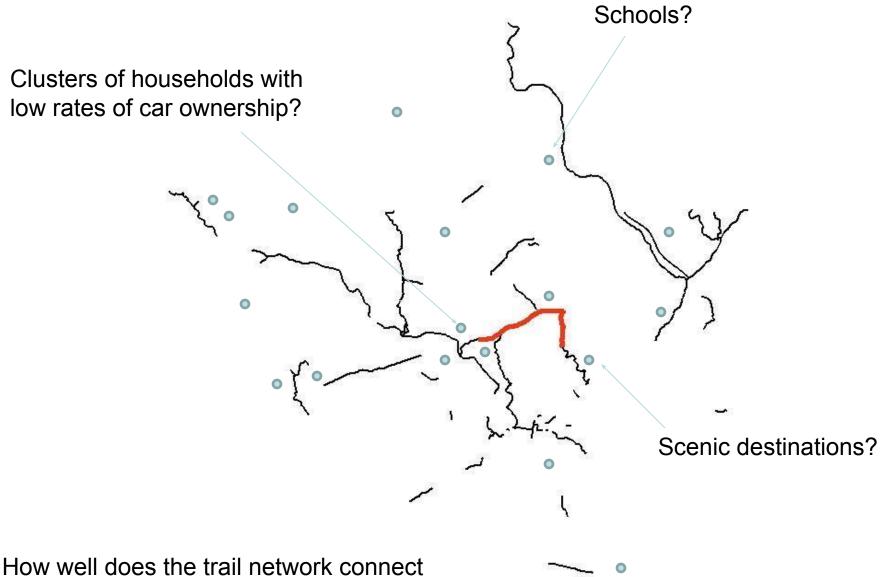
- Time of year (season)
- Weather
- How many people live nearby
- Nearby destinations
- Trail width
- Trail surface
- Trail cleanliness
- Etc

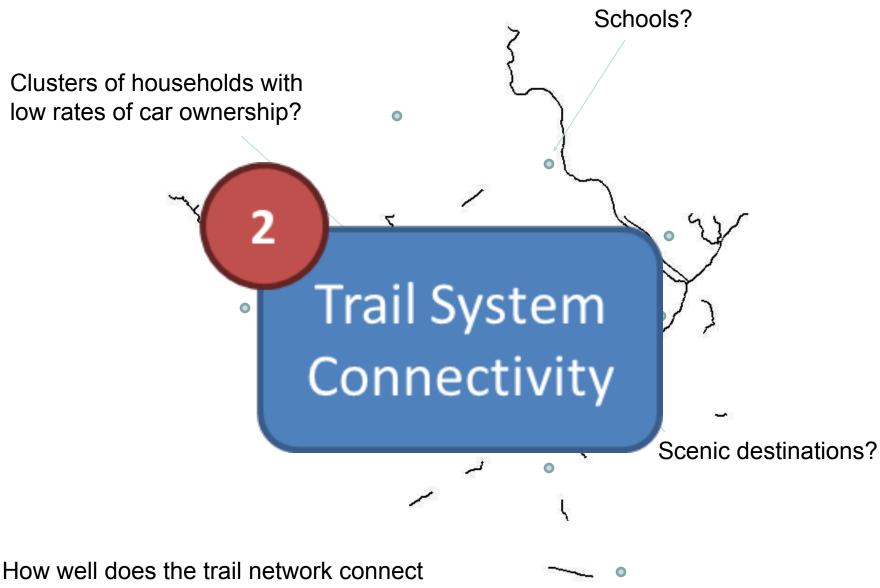

Trail GIS Research Questions


- Which trail segment should we build next?
- What are our goals for the trail system who and what do we want to connect?
- How can we compare potential segments as apples?
- How good a job does the trail network do of connecting origins and destinations?

Year One Deliverables: Trail System Connectivity

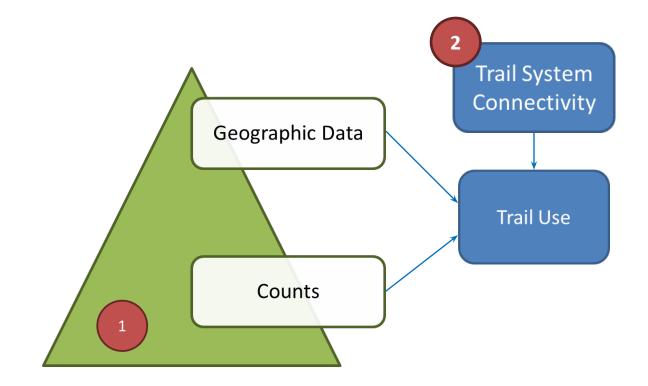
- Unit of analysis is the community level
- Same method, multiple possible applications
 - Developing the method is pure research work
 - Incorporating the tool into practice is a bigger task



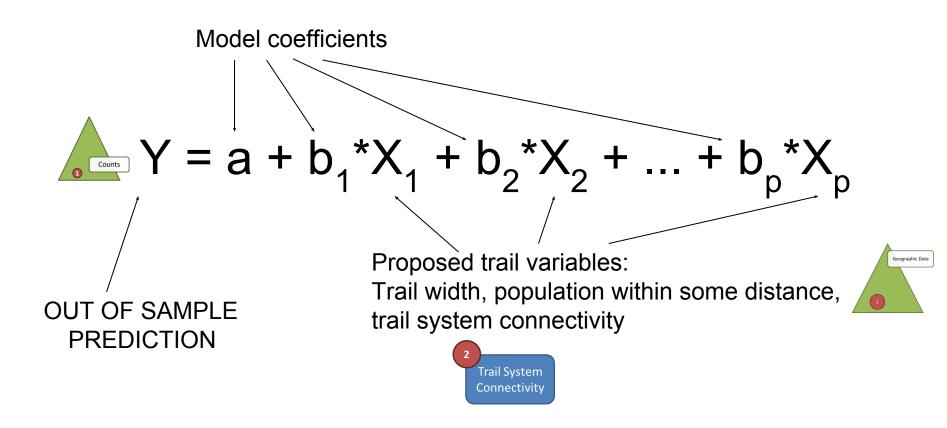

Measure with a statistic that is a function of network distances between all possible point pairs – an add a penalty for nonnetwork distance needed to connect points.

> GIS allows us to calculate thousands of distances for hundreds of pairs

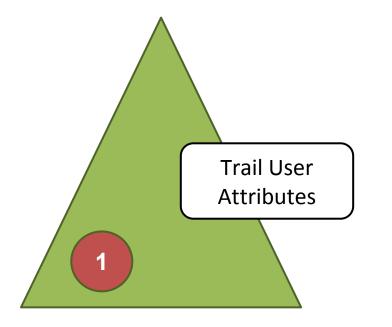
How well does the trail network connect these origins and destinations?



particular origins and destinations?

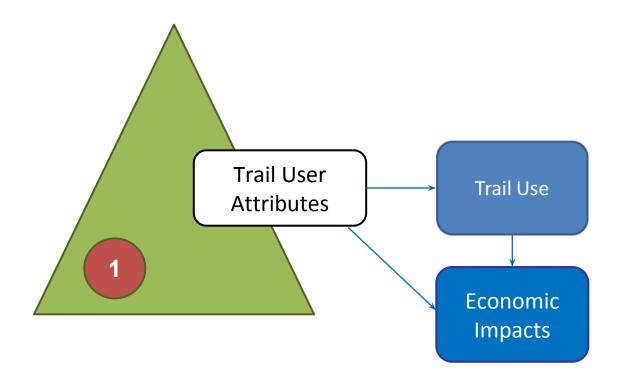


particular origins and destinations?


Year One Deliverables: Forecasting

Year One Deliverables: Forecasting

Year Two Data Collection: Survey



Trail User Research Questions

- Why do people use trails?
- What percentage of trail use replaces trips that would have taken place by other modes?
- How long is the average trail trip?
- Are the different "functional classifications" of trails that we need to know about to answer these questions?

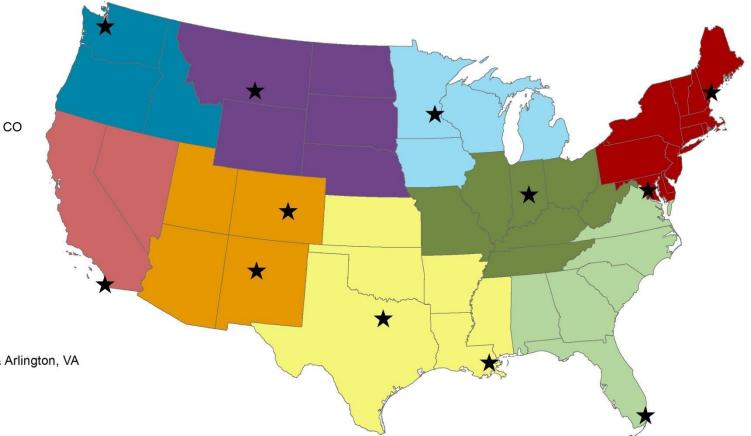
Year Two Deliverables: EIA

Our Co-Investigators

Dr. Greg Lindsey

Dr. Thomas Gotschi

Dr. Mike Lowry



UNIVERSITY OF MINNESOTA Driven to Discover

University of Zurich^{UZH} University of Idaho

- Albuquerque, NM × Billings, MT X Colorado Springs, CO X Fort Worth, TX × Indianapolis, IN × Miami, FL × Minneapolis, MN × New Orleans, LA X Portland, ME × San Diego, CA × Seattle, WA X ×
 - Washington, DC & Arlington, VA

TMAP Monitoring and Modeling Urban Trail Traffic

9 March 2014

HUMPHREY SCHOOL OF PUBLIC AFFAIRS

UNIVERSITY OF MINNESOTA Driven to Discover™

Our Workshop Today

- Thinking about trail traffic ... an exercise
- FHWA Traffic Monitoring Guide (framework)
 Some decisions to make
- Trail Traffic in Minnesota
 - Some monitoring results
 - Some factoring results
 - Some modeling results
- TMAP trail monitoring and modeling

Motivation

- How many people are on our trails?
 » Ray Irvin, Indy Parks Greenways, 1996
- No examples of continuous monitoring of bicyclists and pedestrians

» Hunter and Huang, 1995

 Quality of data about "number of bicyclists and pedestrian by facility ... is "poor" and the "priority for better data is "high"

» Bureau of Transportation Statistics, 2000

Key Questions

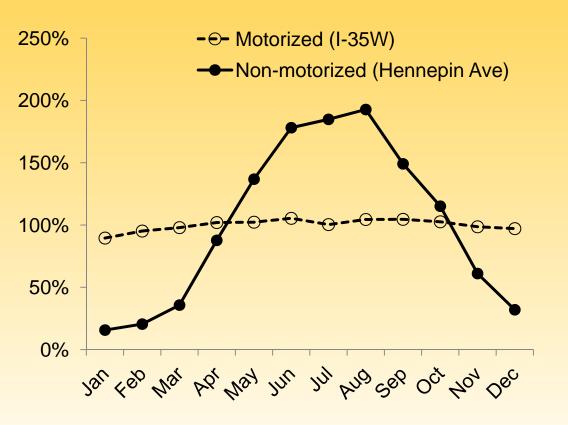
- Advocacy question
 - How do we equip trail advocates and allies with evidence and tools?
- Policy and management question
 - How do we optimize investment in infrastructure for non-motorized transportation – biking and walking?
- Research question
 - How do we monitor, measure, and model urban trail traffic?

Federal Highway Administration Traffic Monitoring Guide: April 2013

- First edition of the TMG with information on monitoring non-motorized traffic (Ch 4)
- "Basic guidance ... to improve the state-of-thepractice"
- "Systematic monitoring...still an emerging area"
- "Limited information ... about best and most cost-effective way to automatically collect non-motorized traffic data"

FHWA Traffic Monitoring Guide

Permanent Continuous Monitoring	Short Duration Monitoring
1. Review existing continuous count	1. Select count locations
program	
2. Develop inventory of available	2. Select type of count
continuous count locations and equipment	(segment vs intersection)
3. Determine the traffic patterns to be monitored	3. Determine duration of counts
4. Establish seasonal pattern groups	4. Determine method of counting
	(automated vs. manual)
5. Determine number of continuous count	5. Determine number of count s
locations	
6. Select specific count locations	6. Evaluate counts (QA/QC)
7. Compute adjustment factors	7. Apply factors (occlusion, time of day, day of week, monthly, seasonal)



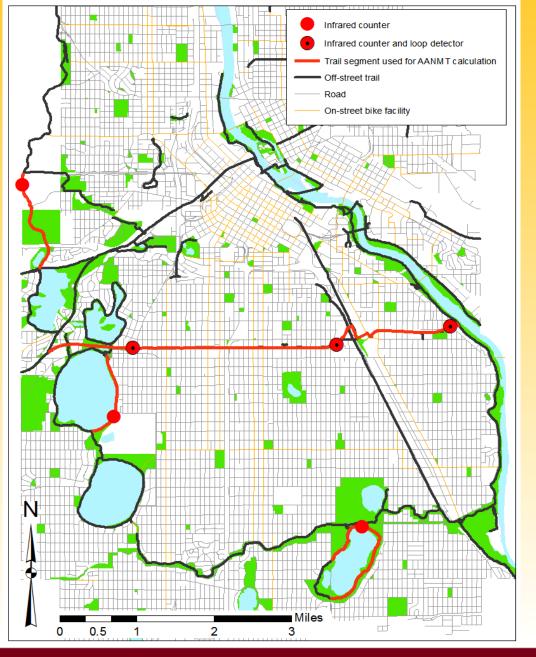
TMG: Important Differences between Motorized and Non-Motorized Monitoring

- Scale of non-motorized data collection more limited
- More experience with manual (very) shortduration counts (e.g., 2 hours) than automated counts
- Technologies for automated non-motorized counting still evolving; error rates unknown
- Standard procedures for analyzing data not developed

Motorized and Non-motorized Monitoring

What are implications of differences in traffic patterns for monitoring and modeling?

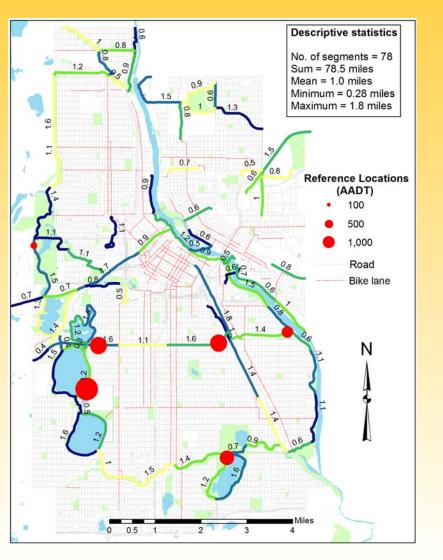
Practical Decisions in Monitoring and Modeling

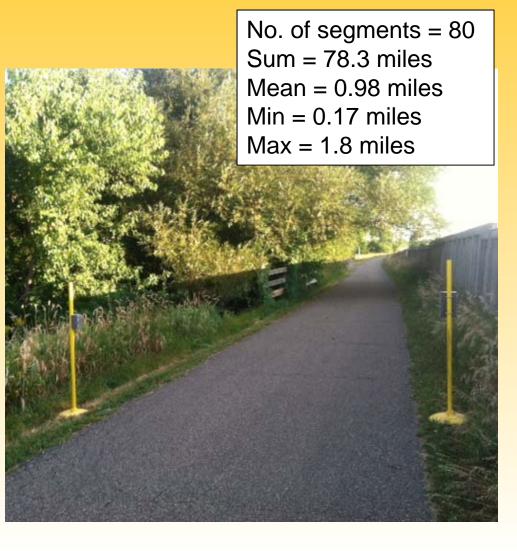

- 1. Purpose, goal for monitoring
- 2. Monitoring locations (system/network, trails, segments, reference and short-duration sites)
- 3. Monitoring technologies
- 4. Quality assurance/quality control procedures
- 5. Analytics methods (factor groups, correction factors, factoring method)
- 6. Modeling procedures (land use regressions)
- 7. Resources to sustain and improve

Trail Monitoring in Minneapolis

1. Purpose	 Estimates of average annual daily trail traffic, miles traveled (mixed mode = bikes & peds)
2. Locations	6 reference sites, 76 short-duration locations
3. Technologies	Trail Master Active Infrared Counters (& inductive loops)
4. QA/QC	 On-site calibration, outliers, correction for occlusion, systematic error
5. Analytics	Two-step factoring, day-of-year factors
6. Modeling	Negative binomial land use regression, weather controls
7. Sustainability	Collaboration, scrambling

Automated Traffic Monitoring on Multiuse Trails in Minneapolis


Typical Monitoring Site: Midtown Greenway


HUMPHREY SCHOOL OF PUBLIC AFFAIRS

UNIVERSITY OF MINNESOTA Driven to Discover

Trail Segments for Short-Duration Counts

HU21PHREY SCHOOL OF PUBLIC AFFAIRS

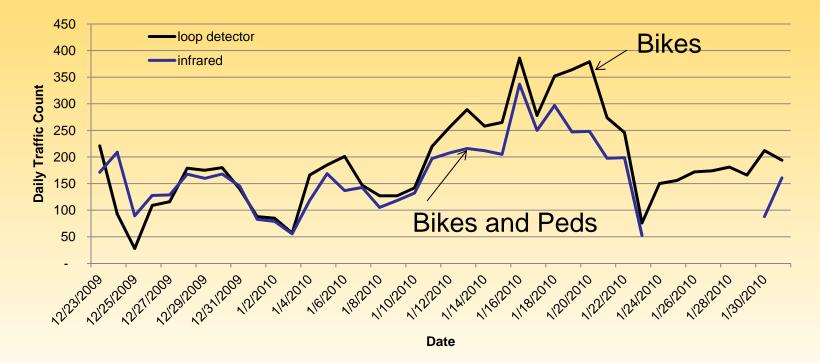
UNIVERSITY OF MINNESOTA Driven to Discover

Infrared Technology

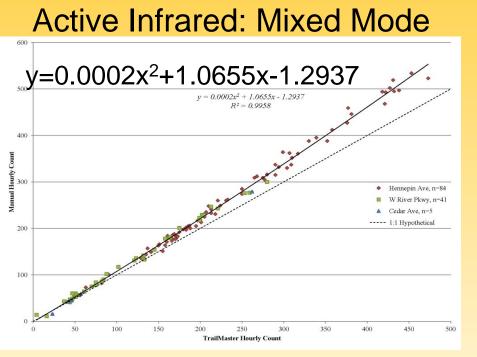
- Trail Master (TMI) active infrared counters
 - "Counts" when user breaks beam
 - Does not distinguish bikes and peds
 - Systematic undercount (occlusion users passing simultaneously)

- Labor intensive
- Old technology

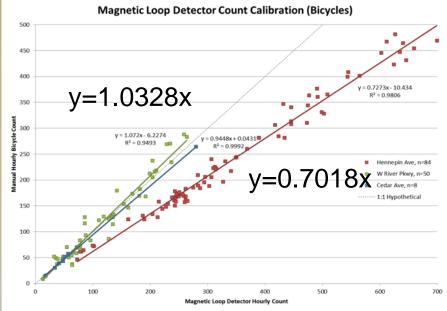
Inductive Loop Technology


- Inductive loop counters (3 locations)
 - Counts when bicycles ride over loop in pavement
 - Only counts bicycles
 - Installed by Dept. of Public Works in 2007
 - Counts not validated by city

QA/QC: A Calibration Problem


Counts (bikes) > Infrared Counts (bikes & peds)

Hennepin Ave. Counter Site (Dec 2009 & Jan 2010)



Quality Assurance / Qualtiy Control

- Systematic undercounts due to occlusion
- Hourly adjustment equations same across locations

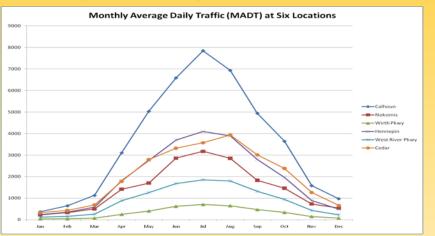
Inductive Loop: Bicycles

- Over and undercount due to installation, maintenance
- Hourly adjustment equations vary by location

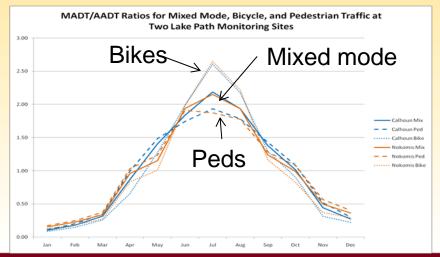
Correction Equations for Automated Counters by Mode

Monitoring Logation(s)	Type of	Mode	Hours of	Hourly Traffic
Monitoring Location(s)	Monitor	Mode	Validation	Adjustment Equations*
	Active	Mixed		
All six locations	infrared		130	y=0.0002x ² +1.0655x-1.2937
	Active	Peds		
Lakes Calhoun and Nokomis	infrared		20	y=1.2920x
	Active	Bikes		
Lakes Calhoun and Nokomis	infrared		19	y=1.078x
	Inductive	Bikes		
Midtown Greenway: Hennepin	Loop		86	y=0.7018x
	Inductive	Bikes		
Midtown Greenway: Cedar	Loop		8	y=0.9451x
Midtown Greenway: W. River	Inductive	Bikes		
Parkway	Loop		51	y=1.0328x

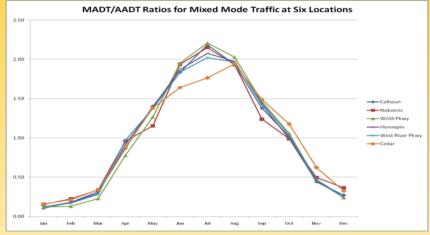
y = estimated hourly traffic; x = hourly count from monitor


Average Annual Daily Bicycle & Pedestrian Traffic

Location / Mode	Estimated Total Annual Traffic	Estimated AADT	Percent of Traffic at Site
(1) Hennepin Ave. & Midtown Greenway (MGW)			
a. Bicycle	629,262	1,724	87%
b. Pedestrian	91,451	251	13%
c. Total – mixed-mode	720,714	1,975	100%
(2) West River Pkwy & MGW			
a. Bicycle	320,198	877	(96%)
b. Pedestrian	13,196	36	4%
c. Total – mixed-mode	333,395	913	100%
(3) Cedar Ave. & MGW			
a. Total – mixed-mode	738,336	2,023	100%
(4) Lake Calhoun Parkway*			
a. Bicycle (outer)	494,209	1,354	(38%)
b. Pedestrian (inner)	814,434	2,231	62%
c. Total – mixed-mode	1,308,643	3,613	100%
(5) Lake Nokomis Parkway*			
a. Bicycle (outer)	193,843	531	36%
b. Pedestrian (inner)	344,604	944	64%
c. Total – mixed-mode	538,448	1,475	100%
(6) Wirth Parkway – mixed-mode	116,765	320	100%
Six Location Mixed-Mode Total	3,756,301	10,291	100%
		LINING	TV OF MINNEGOTA

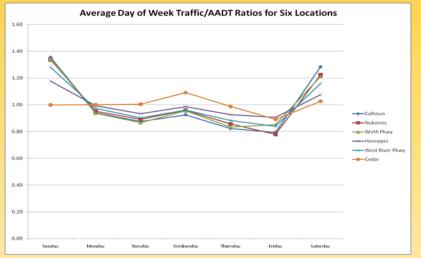


Monthly Mixed Mode Traffic Patterns

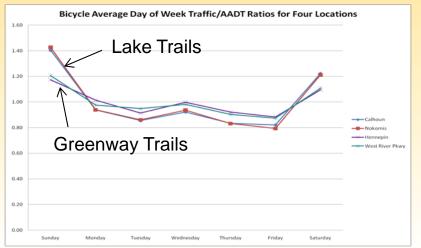

Monthly mean daily traffic

Monthly/annual mean daily traffic by mode

Monthly/annual mean daily traffic

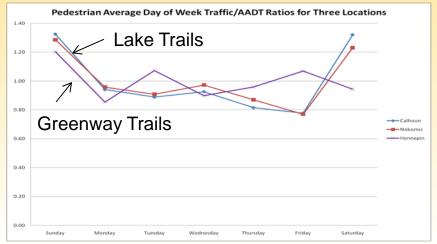


- Mixed mode traffic varied by an order of magnitude across sites
- Monthly to annual mean daily traffic ratios generally were consistent across sites.
- Bicycle traffic is characterized by greater seasonality than pedestrian traffic.



Mean Day of Week Traffic / Annual Mean Daily Traffic

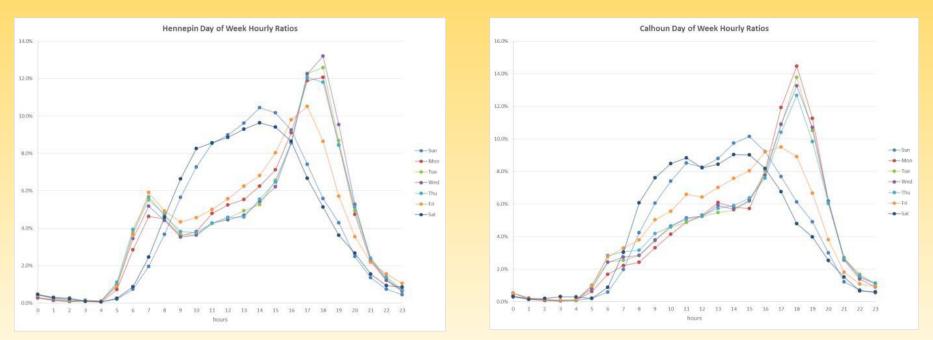
Mixed mode: six monitoring sites



Bikes: recreational and "utilitarian" trail sites

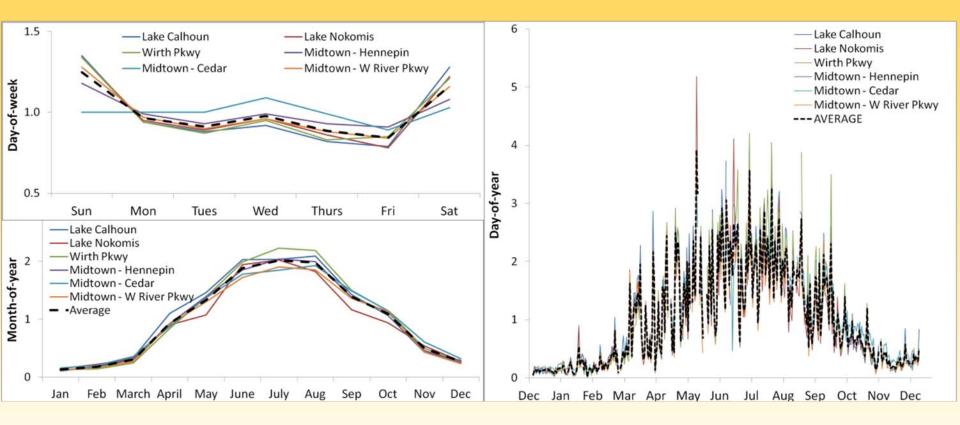
- Mixed-mode day of week scaling factors generally are consistent across locations with higher traffic on weekend days.
- Bicycle day of week factors vary by location, with greater weekend traffic ratios at recreational sites around lakes.
- Pedestrian do not appear to vary as much as bicycle factors but reflect greater day-of-week variability.

Peds: recreational and "utilitarian" trail sites

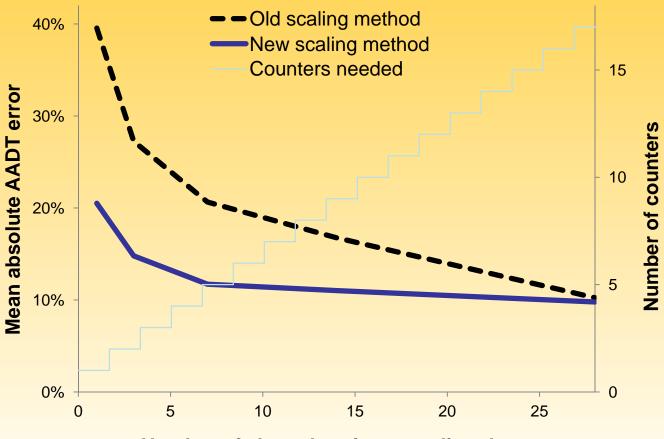


Weekday and Weekend Hourly Traffic (%)

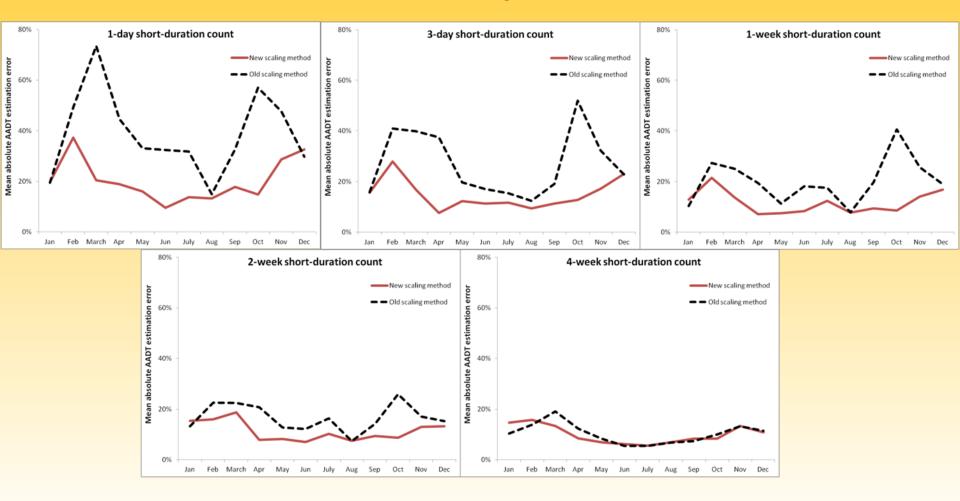
Midtown Greenway Hennepin


Lake Calhoun Trail

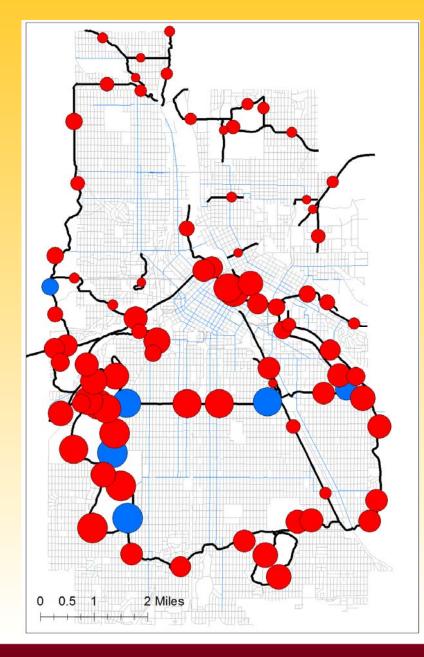
Note: Friday similarities to weekend at lake trail



Adjustment Factors for Short-duration Counts: Day-of-Week, Month-of-Year vs. Day-of-Year

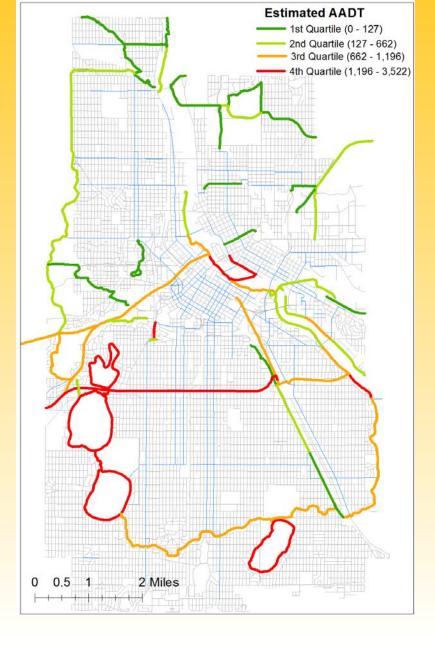

Day-of-Year Factors Reduce Extrapolation Error

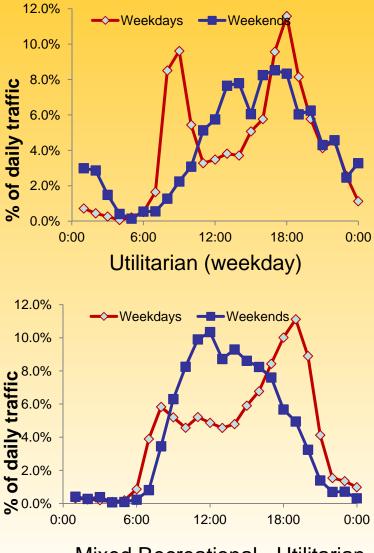
Number of short-duration sampling days


Sampling from April to October Minimizes Extrapolation Error

Average Annual Daily Trail Traffic

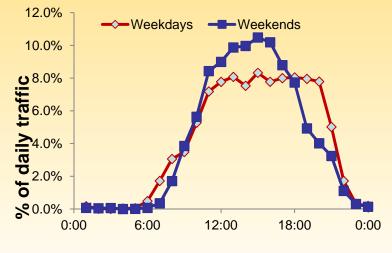
Segment AADT		
Mean	954	
Median	750	
Max	3,728	
P90	2,321	
P75	1,264	
P25	142	
P10	81	
Min	39	


HUMPHREY SCHOOL OF PUBLIC AFFAIRS


UNIVERSITY OF MINNESOTA Driven to Discover

AADT by Trail Segment

- Estimate: ~28 million usermiles traveled
- Lake, Mississippi River, Midtown Greenway Trails most heavily used
- Patterns reflect flows to central business district, university
- Trails in north Minneapolis (low income, minority populations used least)

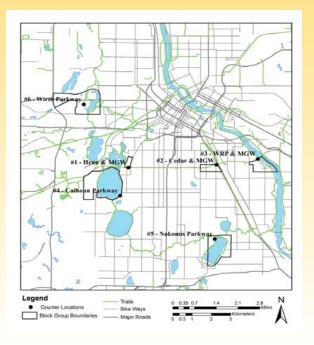


Mixed Recreational - Utilitarian

Short-duration monitoring identified three factor groups. Need new reference monitoring sites.

Recreational

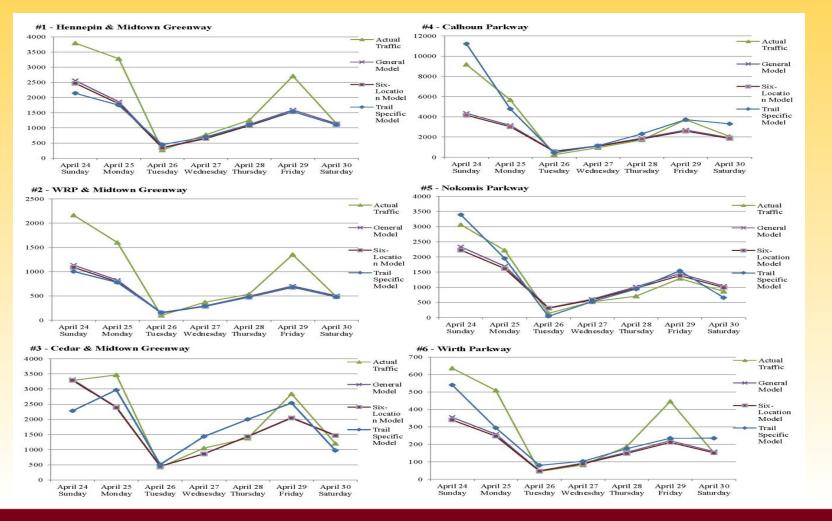
Some Observations


- Traffic volumes on shared-use paths significant
- Systematic error in existing counts (occlusion)
- Volumes vary substantially across locations
- Mode-mix varies substantially across locations
- Traffic follows hourly, daily, monthly patterns
- Patterns vary across locations
- Adjustment factors enable extrapolation of short duration counts (day-of-year better)
- Can estimate miles traveled on trail network
- Need to reconfigure reference sites

HUMPHREY SCHOOL OF PUBLIC AFFAIRS

Estimating Modeling from Counts

- Objective
 - Estimate daily mixed-mode traffic on multiuse trails
- Approach
 - Daily traffic volume =
 - Weather
 - Neighborhood socio-demographics
 - Urban form and built environment
 - Transportation infrastructure



Modeling Mixed Mode Daily Trail Traffic

Varia	ables	Expected Sign							
Neig	Neighborhood Socio-demographic Characteristics								
	African American residents (%)								
	Residents with college degrees (%)	+							
	Population over 64 or below 6 (%) -								
	Median household income. (1,000 dollars) +								
Neig	Neighborhood Built Environment								
	Population density (per square kilometer).	+							
Wea	ther Conditions								
	Recorded high temperature.(in Celsius)	+							
	Deviation from the 30-year normal temperature	+/-							
	Precipitation.(centimeters)	-							
	Average wind speed. (kph)	-							
Tem	poral Dummies								
	Saturday or Sunday (equals 1, otherwise 0)	+							

Modeling Mixed-mode Trail Traffic (Wang et al. 2013)

HUMPHREY SCHOOL OF PUBLIC AFFAIRS

Modeling Choices Affect Accuracy of Estimates

Site	Model Type	Mean Daily	Land Us Ger	e Model Ieral	Six Lo Mo		Trail Specific Models			
		Traffic	Predict	Error	Predict	Error	Predict	Error		
Hennepin	NB2	2496	2393	8.3	2271	10.5	2229	11.4		
	OLS		2703	19.4	2670	18.3	2760	19.4		
WRP	NB2	1188	1014	17.2	1017	17.0	1022	16.5		
	OLS		1454	27.3	1458	27.7	1277	20.6		
Cedar	NB2	2871	2606	13.8	2610	13.7	2351	17.3		
	OLS		2730	10.1	2732	10.2	2843	9.9		
Calhoun	NB2	4103	3649	20.7	3679	20.7	3982	14.3		
	OLS		4033	44.1	4037	44.2	4704	38.0		
Nokomis	NB2	1430	1689	22.5	1703	23.5	1657	19.4		
	OLS		2082	55.9	2085	56.2	1975	47.1		
Wirth	NB2	419	338	17.4	342	17.1	368	12.1		
	OLS		1048	151.5	1051	152.6	471	32.6		
Grand Me	Grand Mean Error NB (%)			6.6	17	. 1	15.2			
Grand Mea	Grand Mean Error OLS (%)			.4	51	.5	27.9			

HUMPHREY SCHOOL OF PUBLIC AFFAIRS

Observations from Modeling

- Possible to identify factors associated with higher non-motorized trail volumes
- Trail models do reasonable job estimating volumes (<u>+</u> 15-20%)
- Modeling choices affect accuracy
- Models can be improved with better specification and additional data

TMAP Trail Monitoring: Building on Experience

1. Purpose	 Develop national trail model, factors for all climatic regions Estimates of average annual daily trail traffic, miles traveled
2. Locations	• 9 regions, 10-12 cities, 25-30 locations
3. Technologies	 Eco-multi counters (inductive loop and passive infrared, separate bike and ped counts)
4. QA/QC	 On-site calibration, outliers, correction for occlusion, systematic error
5. Analytics	Two-step factoring, day-of-year factors
6. Modeling	Negative binomial land use regression, weather controls
7. Sustainability	 Collaboration, local partners

HUMPHREY SCHOOL OF PUBLIC AFFAIRS

Questions?

For more information contact:

Greg Lindsey (<u>linds301@umn.edu</u>)

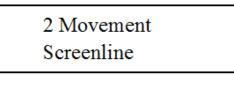
HUMPHREY SCHOOL OF PUBLIC AFFAIRS

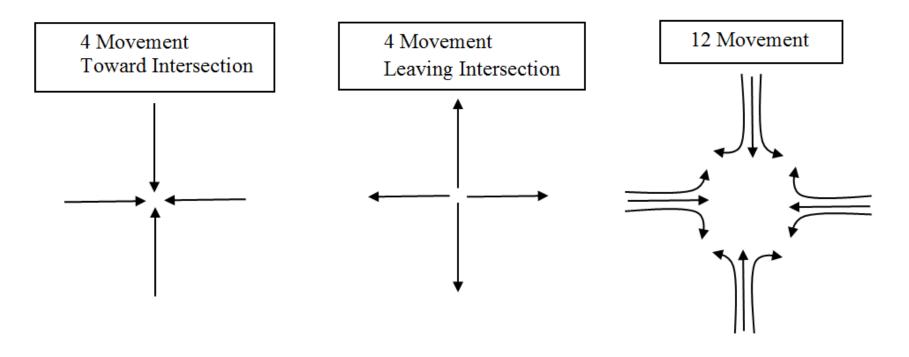
Bicycle Network Analysis

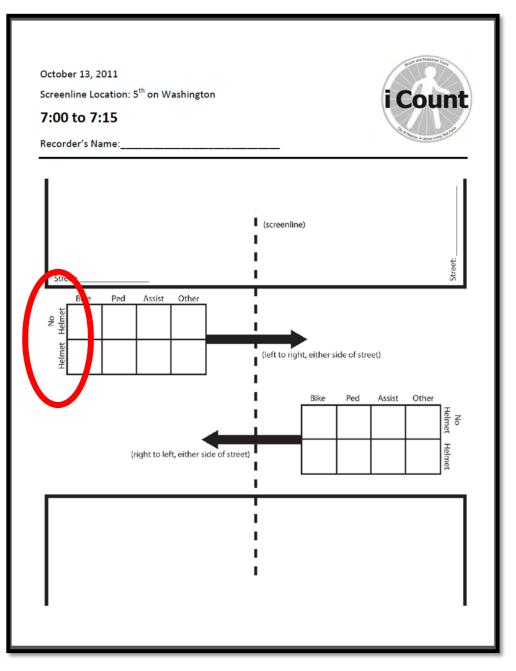
Active Living Research Conference 2014 Mike Lowry, University of Idaho

<u>Outline</u>

- 1. Conducting citizenvolunteer count programs.
- 2. Estimating networkwide bicycle volumes.




3. Prioritizing projects based on connectivity.



CONDUCTING CITIZEN-VOLUNTEER COUNT PROGRAMS

<u>Screenline Additional</u> -Helmet/No Helmet -Male/Female -Adult/Child -Street/Sidewalk

Citizen Volunteer Counts

Table 2: Count cities and locations by year ΔM

PM AM PM

 AM

PM

AM PM

PM

City AM

Bainbridge

Island

Bellevue

2012 WASHINGTON STATE BICYCLE AND PEDESTRIAN DOCUMENTATION PROJECT

L AND I LDL.		200				JLCI			Belling	ham 6 6	12	12	17	17	
											6	4	6	3 5	
Table 2: Co	punt	unt cities and locations by year											9	9	
	20	08	20	09	20	10	20	11	20	12	5 9	4 9	2 8	3 5	
City	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	D	0	0	0	
City	Am	1.141		1.14	Advi		Am	1 141		1.00	D	0	0	0	
Bainbridge Island	0	0	0	0	0	5	1	1	5	4	5	4 7 6	7 8 7	3 8 7	
Bellevue	4	3	13	13	13	13	5	7	7	8	6	5	6	4	
Dellevue			13	13	13	13			· · · · · · · · · · · · · · · · · · ·	•	4	4	0 6	0 6	
Bellingham	6	6	12	12	17	17	18	18	18	18	D	0	0	0	
Bothell	5	6	6	4	6	3	6	5	6	5	D D	0	5 0	10 0	
Bremerton	6	6	6	4	6	5	1	3	6	5	0	0	4	4	
Burien	0	0	4	9	9	9	9	9	10	10	0 6	0 4	0 6	0 5	
burien				7							0	0	0	0	
Ellensburg	6	4	5	4	2	3	3	5	4	4	0	0	2	2	
Everett	6	6	9	9	8	5	10	9	11	11	3 D	4 0 3	1	1	
Federal Way	0	0	0	0	0	0	0	0	1	5	5	3 14 0	3 16 6	3 14 6	
Ferndale	1	1	0	0	1	0	0	0	0	0	0	10	° 10	9	
										_	D	0	0	0	
Gig Harbor	0	0	0	0	0	0	0	0	1	1	13 6	13 6	15 7	17 6	
Issaquah	0	0	6	4	7	3	6	3	6	6	0	0	0	0	
Kelso	0	0	5	7	8	8	0	1	2	0	5	6	2	3	ŀ
Reiso			5	1		0			-		3	6	2	2	t
										kima 3 3 91 92 Total 183	1 152 3	1 149 301	1 184 36	2 182	
												and the second s			1

National Bicycle and ×

www.bikepedocumentation.org

Count Dates:

The next count/survey days are **May 6-8, 2014**. Upcoming days through 2014 are:

- May 6-8, 2014
- July 4-6, 2014
- Sept 9-14, 2014

Stay tuned for the next round of count days!

NBPD to Provide Free Summary Reports!

About

One of the greatest challenges facing the bicycle and pedestrian field is the lack of documentation on usage and demand. Without accurate and consistent demand and usage figures, it is difficult to measure the positive benefits of investments in these modes, especially when compared to the other transportation modes such as the private automobile. An answer to this need for data is the National Bicycle & Pedestrian Documentation Project, cosponsored by and Alta Planning and Design and the Institute of Transportation Engineers (ITE) Pedestrian and Bicycle Council. This nationwide effort provides consistent model of data collection and ongoing data for use by planners, governments, and bicycle and pedestrian professionals.

Home

Participate Downloads

Methodology

The basic assumptions of the methodology are that, in order to estimate existing and future bicycle and pedestrian demand and activity, agencies nationwide need to start conducting counts and surveys in a consistent manner similar to those being used by ITE and other groups for motor vehicle models.

The National Bicycle and Pedestrian Documentation Project has developed a summary report that highlights the valuable information that can be gained from year-long automatic bicycle and pedestrian counts. If your community uses Eco-Counter automatic count technology, the National Bicycle and Pedestrian Documentation Project will provide a free summary report of the data in exchange for submission of the annual automatic count data to the project. This report puts valuable information regarding usage and trends at your fingertips which can be used in grant applications, press releases, annual count reports, etc. Sample reports are available here and here. Email your Eco-Counter data in excel format to data@bikepeddocumentation.org. Please indicate the exact location of the automatic counter and tell us a bit about the bicycle or pedestrian facility.

News

• Adjustment Factors Available: Adjustment factors are now availabe in an Excel format! While more year-long automatic count

Instructions

The other dates were selected to provide a representative sampling of activity during a typical spring (May) and winter (January) period. The 4th of July period was selected because it will afford both a typical summer weekday and what is typically the busiest holiday period and activity period for recreational facilities and activities.

Having an official count week is also important for generating enthusiasm around the date. Much like nationwide Bike to Work Weeks, we hope that the National Documentation Project Week in September will become a much-anticipated annual event in localities around the nation.

Times

Based on our research, we are recomm below). However, if you have been doir using these same time periods for all fu

> RECOMMEN Weekday, 5 Saturday, 12

SECONDAR Weekday, 7

D2

D1

D3

Saturday, 7

Rationale for Time Periods

Time periods are more important for co periods were chosen since the afternoo travelers, with commuters, school childr conducted during these periods will pro bicycling during the peak periods of the peak period. Actual local peak periods n that the national count time periods be periods if it is determined that this period

Automatic Machines

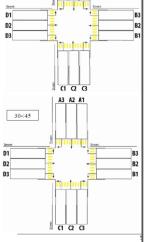
While the NBPD is based on manual cou conducting counts to consider conductin community. These machines will give in usage, benefits and other information.

Weather

Weather may be a determinant in select conduct counts and surveys, but a partie poor or unusual during the count period

Forms

ls/


Please fill in your name, count location, date, time period, and weather conditions (fair, rainy, very cold). Count all bicyclists crossing through the intersection under the appropriate categories. Count for two hours in 15-minute increments.

15-30

A3 A2 A1

- Count bicyclists who ride on the sidewalk.
- Count the number of people on the bicycle, not the number of bicycles.
- Use one intersection graphic per 15-minute interval.

A3 A2 A1 00-:15

and the Institute of Transp

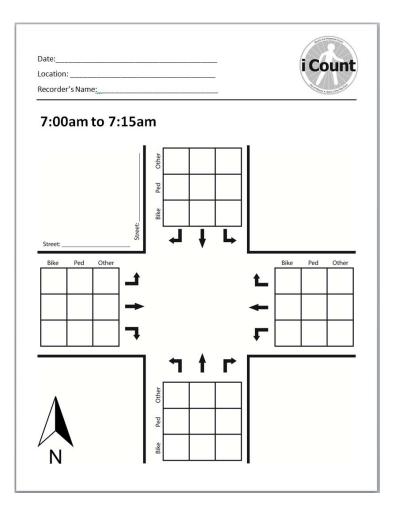
© 2014 Alta Planning + Design. All rights reserved.

estrian Documentation Project

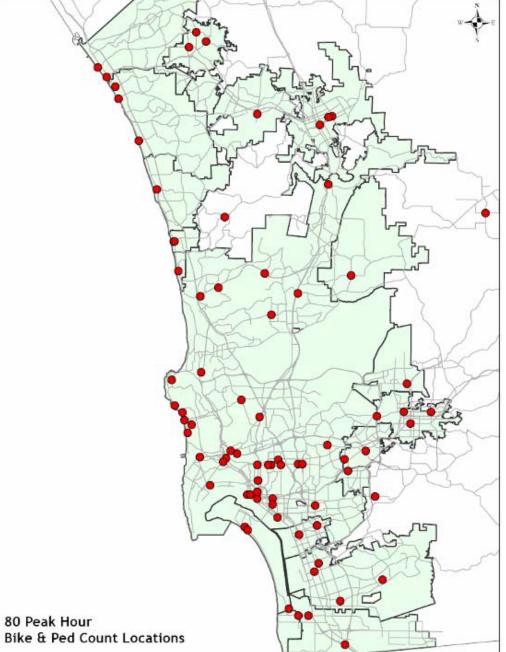
숬 Ξ

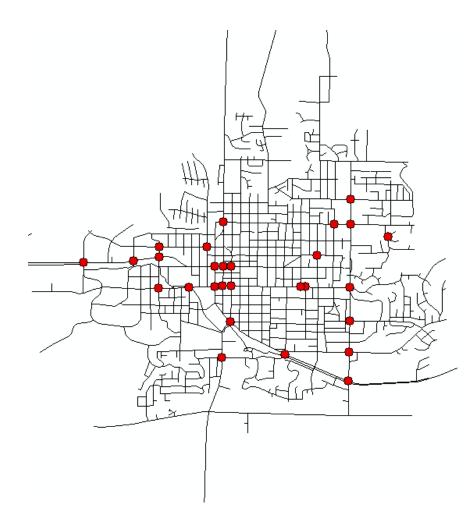
rials

Training Presentation


How do you count this?

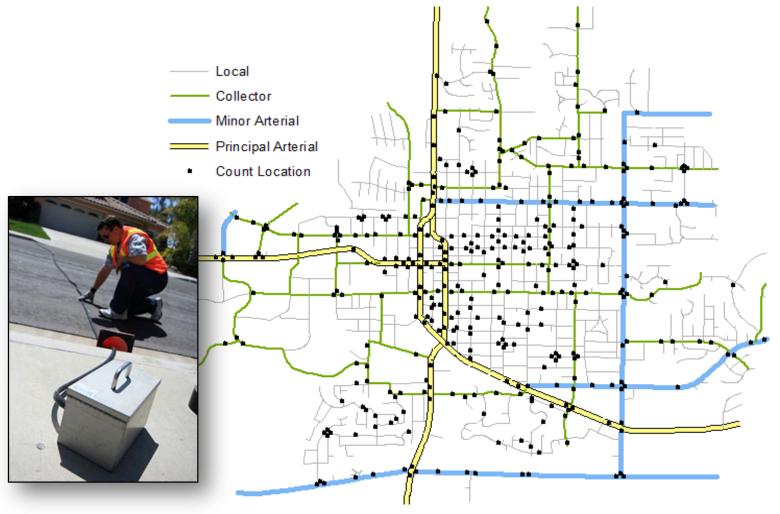
Recommendations


- Create your own forms
- Enhance the training
- Customize the experience
- Define the purpose and stay focused



Purpose?

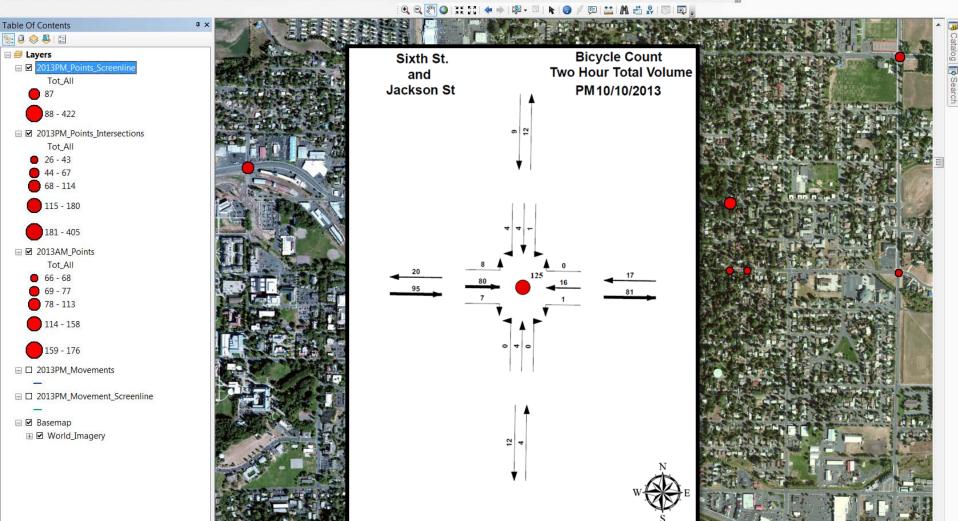
Purpose	Yes/No/Maybe
Raising awareness about bicycle and pedestrian activity	
Providing public engagement and outreach	
Getting a snap shot of community-wide biking/walking	
Applying for grants	
Analyzing trends year-to-year	
Making comparisons with other communities	
Determining percentage of bicycle and pedestrian travel	
Making adjustments to traffic signal timing	
Improving signage	
Making infrastructure improvments	
Improving paint markings	
Safety analysis	
Project selection	
Project evaluation (before and after studies)	
Identifying bike/ped characteristics (Helmet/No Helmet etc.)	


80 locations!

- 26 Locations
- 2011, 2012, 2013
- 7:00 9:00 AM
- 4:00 6:00 PM

341 locations

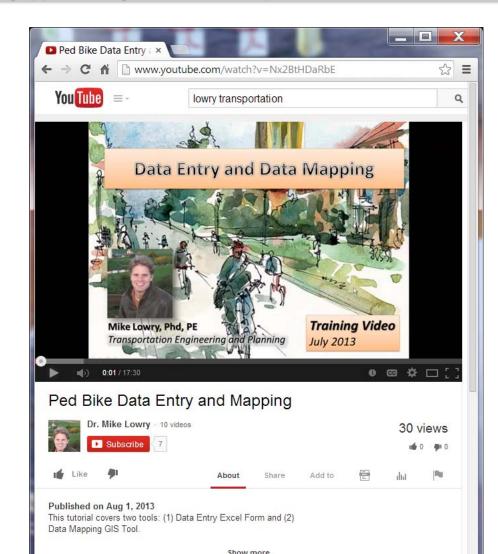
Three day tube counters for cars



X	H) + (H -	-	the Personnel Num	-	-	-	Sixth_Haye	s_West.xls [Co	ompatibilit	y Mode] - Mie	crosoft Excel				-						3
F	ile Home	Insert Pag	e Layout 🛛 Forn	nulas Data	Review	View Develope	r Add-Ins	Acrobat											∞ 🕜	- 6	83
	A830	• (fx 10/10	/2013																	~
	A	В	С	D	E	F G	Н	1	J	К	L	M	N	0	Р		Q	R	S	1	T 🔺
1	Date	TimePeriod	Movement	Mode	Count																
812	10/10/2013	5:30-5:45 PM	NBL	Pedestrian	0																
813	10/10/2013	5:30-5:45 PM	NBT	Pedestrian	0	_			_						_	_					
814	10/10/2013	5:30-5:45 PM	NBR	Pedestrian	0	iCount Data	Entry Form										X				
815	10/10/2013	5:30-5:45 PM	WBL	Pedestrian	0													1			
816	10/10/2013	5:30-5:45 PM	WBT	Pedestrian	1	Numerica	al Date 01/	01/2011:		Othe	r: 0	0	0								
817	10/10/2013	5:30-5:45 PM	WBR	Pedestrian	0	1005107															
818	10/10/2013	5:30-5:45 PM	SBR	Bicycle	0	Date:				Pedestria	an: 0	0	0								
819	10/10/2013	5:30-5:45 PM	SBT	Bicycle	0	Select 15	Minute Inc	erement.													
820	10/10/2013	5:30-5:45 PM	SBL	Bicycle	0	Beleet Is	windle in	cicilicat.		Bicycli	st: 0	0	0								
821	10/10/2013	5:30-5:45 PM	EBL	Bicycle	0	Morning	shift:				- 1										
822	10/10/2013	5:30-5:45 PM	EBT	Bicycle	0	C 7:00	7.15 AM							1							
823	10/10/2013	5:30-5:45 PM	EBR	Bicycle	0	○ 7:00 -		D.1	D 1	01					D'1. D		04				
824	10/10/2013	5:30-5:45 PM	NBL	Bicycle	0	○ 7:15 -	7:30 AM	Bike:	Ped:	Other:					Bike: P	red:	Other:				
825	10/10/2013	5:30-5:45 PM	NBT	Bicycle	0	○ 7:30 -	7:45 AM	0	0	0						0	0				
826	10/10/2013	5:30-5:45 PM	NBR	Bicycle	0	C 7:45 -	8:00 AM		Ŭ						,	Ű					
827	10/10/2013	5:30-5:45 PM	WBL	Bicycle	0	C 8:00 -									I						
828	10/10/2013	5:30-5:45 PM	WBT	Bicycle	1			0	0	0					0	0	0				
829	10/10/2013	5:30-5:45 PM	WBR	Bicycle	0	○ 8:15 -	8:30 AM				\rightarrow										
830	10/10/2013	5:45-6:00 PM	SBR	Other	0	€ 8:30 -	8:45 AM								L I						
831	10/10/2013	5:45-6:00 PM	SBT	Other	0	C 8:45 -	9:00 AM	0	0	0					0	0	0				
832	10/10/2013	5:45-6:00 PM	SBL	Other	0																
833	10/10/2013	5:45-6:00 PM	EBL	Other	0	Evening	Shift:	-							J		J				
834	10/10/2013	5:45-6:00 PM	EBT	Other	0	C 4:00 -	4:15 PM														
835	10/10/2013	5:45-6:00 PM	EBR	Other	0	C 4:15 -	4.30 PM														
836	10/10/2013	5:45-6:00 PM	NBL	Other	0				4												
837	10/10/2013	5:45-6:00 PM	NBT	Other	0	C 4:30 -	4:45 PM	/		Oth	er: 0	0	0								
838	10/10/2013	5:45-6:00 PM	NBR	Other	0	⊂ 4:45 -	5:00 PM						1								
839	10/10/2013	5:45-6:00 PM	WBL	Other	0	⊂ 5:00 -	5:15 PM			Ped	: 0	0	0								
840	10/10/2013	5:45-6:00 PM	WBT	Other	0	C 5:15 -	5:30 PM	Í N	а <u>`</u>												
841	10/10/2013	5:45-6:00 PM	WBR	Other	0				N	Bik	e: 0	0	0								
842	10/10/2013	5:45-6:00 PM	SBR	Pedestrian	0	⊂ 5:30 -	5:45 PM														
843	10/10/2013	5:45-6:00 PM	SBT	Pedestrian	0	○ 5:45 -	6:00 PM				Close Free F	1	Culture 16	Data		Clear	1				
844	10/10/2013	5:45-6:00 PM	SBL	Pedestrian	0						Clear Form [Submit	Udld		Close					_
845	10/10/2013	5:45-6:00 PM	EBL	Pedestrian	0	<u></u>		_	_	12	-		_	_	-	-	-	2			=
846	10/10/2013	5:45-6:00 PM	EBT	Pedestrian	0																
		5:45-6:00 PM	1 m	Pedestrian	0															_	¥
_		mation Data	Chart / 💭												111						*
Rea	dy 🛄															E		100% (-	-]	(+)

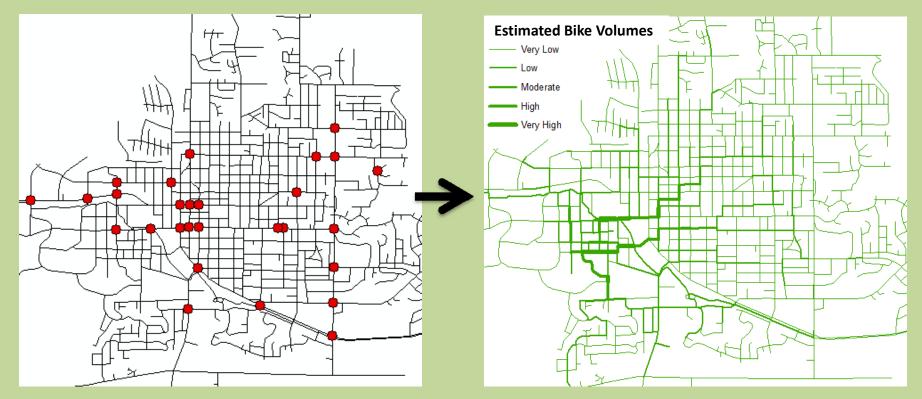
Q Untitled - ArcMap

File Edit View Bookmarks Insert Selection Geoprocessing Customize Windows Help 🗋 🖆 🖶 🖓 🤚 🖺 🛪 🤊 🗠 🧄 🛛 1:10,063 🔹 💌 🕵 🖾 🗊



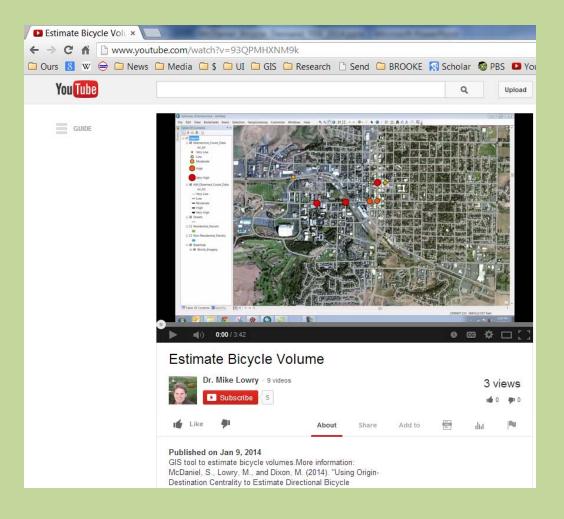
III

2315002.035 1851285.4 Feet


[Data Entry and Mapping Demonstration video]

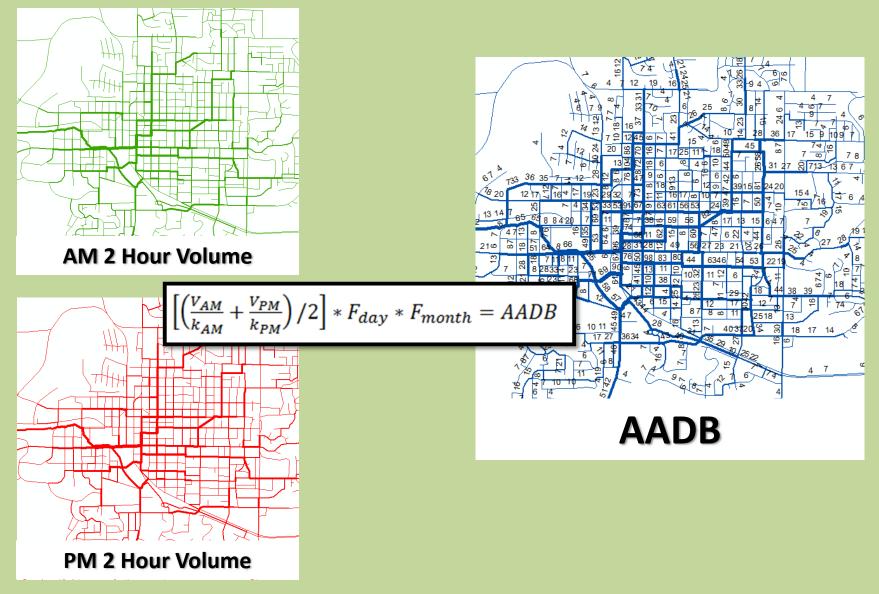
http://www.youtube.com/watch?v=Nx2BtHDaRbE

ESTIMATING NETWORK-WIDE BICYCLE VOLUMES



Observed Count Points

Network-wide 2 Hour Volume


[Volume Estimation Demonstration video]

http://www.youtube.com/watch?v=dMp2XIQaykw

Step 1. Spatially Extrapolate

Step 2. Temporally Extrapolate

Scenario Planning

Scenario Planning

Third Street Bicycle Volumes Existing and Forecasted

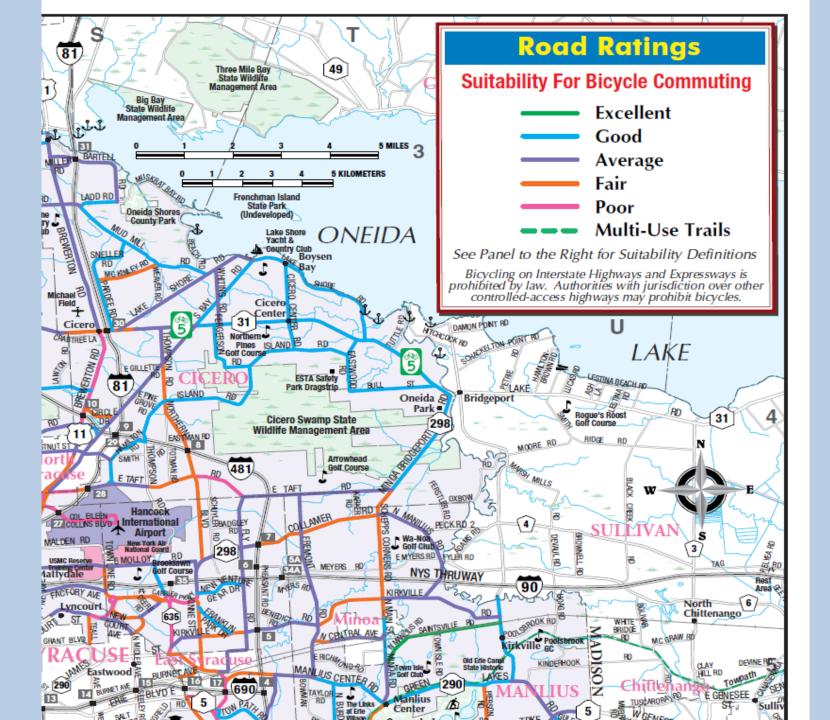
Intersection Cross Street	Existing Conditions (AADB)	Proposed Scenario (AADB)	
Van Buren Street	24	226	>
Harrison Street	28	230	Increase of about
Tyler Street	32	230	200 bicyclists per day.
Polk Street	44	253	
Taylor Street	89	239	
Fillmore Street	127	255	
Pierce Street	146	255	\triangleright

Increase of about 150 bicyclists per day.

PRIORITIZING PROJECTS BASED ON CONNECTIVITY

• Bicycle Suitability

Perceived comfort and safety of a <u>segment</u> of street or pathway


• Bikeability

Perceived comfort and safety of <u>network</u> connectivity for accessing important destinations

• Bicycle Friendliness

Perceived comfort and safety of <u>all aspects</u> of bicycle travel, including bikeability, laws and policies to promote bicycling, education efforts to encourage bicycling, and general acceptance of bicycling throughout the community

Name of Method	Acronym	Author	Date
Bicycle Safety Index Rating	BSIR	Davis	1987
Bicycle Stress Level	BSL	Sorton and Walsh	1994
Road Condition Index	RCI	Epperson	1994
Interaction Hazard Score	HIS	Landis	1994
Bicycle Suitability Rating	BSR	Davis	1995
Bicycle Level of Service	BLOS	Botma	1995
Bicycle Level of Service	BLOS	Dixon	1996
Bicycle Suitability Score	BSS	Turner et al	1997
Bicycle Compatibility Index	BCI	Harkey et al	1998
Bicycle Suitability Assessment	BSA	Emery and Crump	2003
Rural Bicycle Compatibility Index	RBCI	Jones	2003
Compatibility of Roads for Cyclists	CRC	Noel et al	2003
Bicycle Level of Service	BLOS	Zolnik	2007
Bicycle Level of Service	BLOS	Jensen	2007
Bicycle Level of Service	BLOS	Petritsch et al	2007
Bicycle Environmental Quality Index	BEQI	SFDPH	2009
Bicycle Quality Index	BQI	Birk et al	2010
Bicycle Level of Service	BLOS	НСМ	2011
Bicycle Levels of Traffic Stress	LTS	Mekuria and Furth	2012

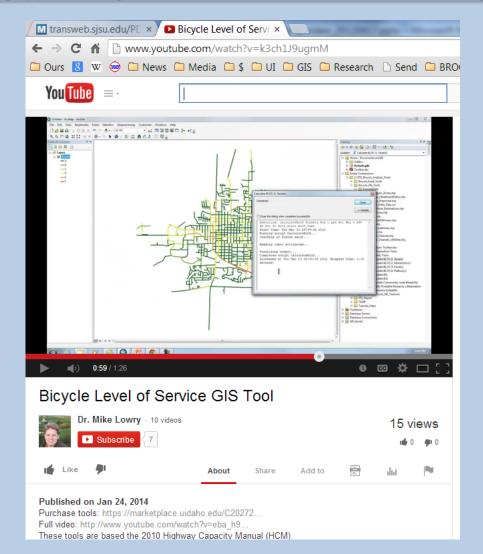
Equation


Bicycle Level =
$$0.76 + [-0.005((w_{ol} + w_{bl} + w_{os})(2 - 0.005v) + (w_{bl} + w_{os} - 20p_{pk}) - 1.5c)^{2}]$$

of Service + $0.507 \ln \left(\frac{v}{4N_{th}}\right)$
+ $0.199[1.119 \ln(S - 20) + 0.8103](1 + 0.1038P_{HV})^{2} + 7.066(\frac{1}{P_{c}^{2}})$

Input

Attribute	Description					
wol width of outside lane (ft)						
wbl	wbl width of bike lane (ft)					
wos	width of outside shoulder including parking and gutter (ft)					
ppk	estimated proportion of on-street parking that would be occupied during analysis period (decimal)					
с	curb present (yes = 1, no =0)					
v	directional analysis period vehicle volume (vph)					
Nth	number of through lanes (#)					
S	average vehicle speed (mph)					
PHV	percent heavy vehicles (decimal)					
Pc	pavement condition (poor-excellent) (0-5)					


Output

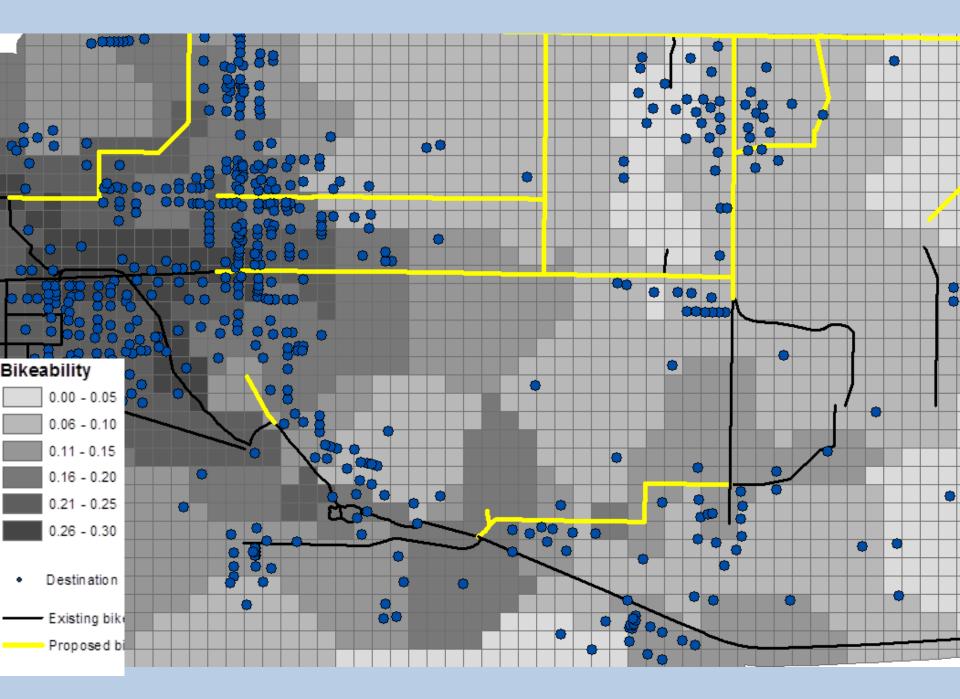
BLOS	Letter Grade
≤ 2.00	A
2.00-2.75	В
2.75-3.50	с
3.50-4.25	D
4.25-5.00	E
>5.00	F

[BLOS Demonstration video]

http://www.youtube.com/watch?v=k3ch1J9ugmM

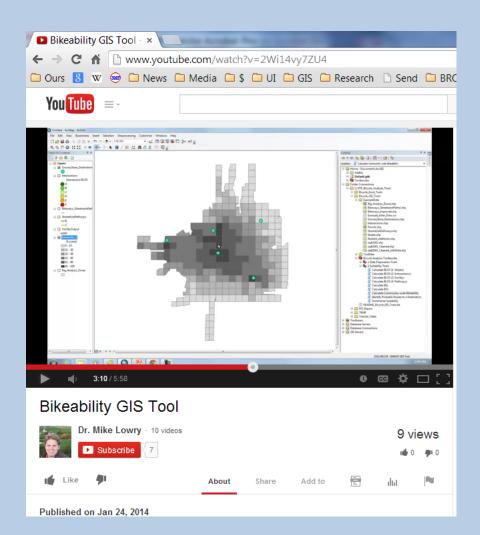
BLOS	5 Current		Proposed t Improvement	Great Bicycle Suitability
	Conditions		Scenario 2	
A	70	78	84	But does it go anywhere?
B	7	8	5	
C	10	8	5	
D	7	3	3	
E	3	1	1	
F	3	2	2	

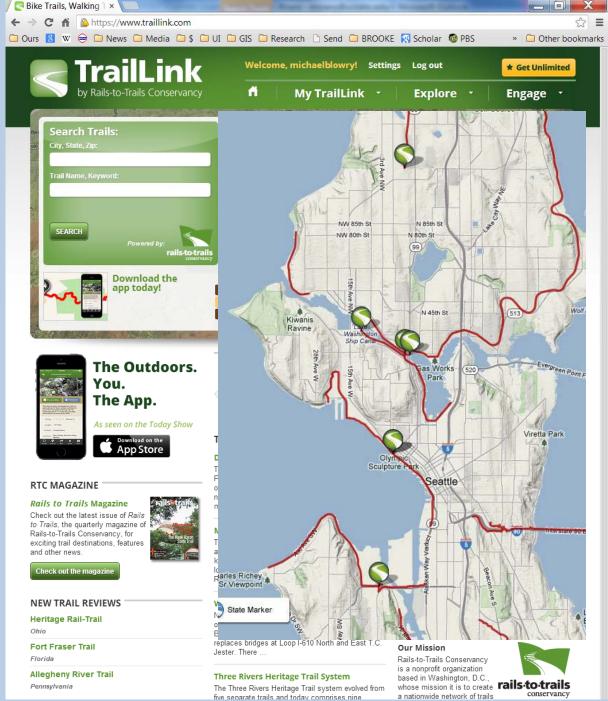
• Bicycle Suitability


Perceived comfort and safety of a <u>segment</u> of street or pathway

• Bikeability

Perceived comfort and safety of <u>network connectivity</u> for accessing important destinations


• Bicycle Friendliness


Perceived comfort and safety of <u>all aspects</u> of bicycle travel, including bikeability, laws and policies to promote bicycling, education efforts to encourage bicycling, and general acceptance of bicycling throughout the community

[Bikeability Demonstration video]

http://www.youtube.com/watch?v=2Wi14vy7ZU4

a nationwide network of trails

CONCLUSION

• Explosion of citizen-volunteer programs...

• Promising new GIS tools...

Rails-to-Trails is working on connectivity!

Thank you...

...Questions??

Mike Lowry, PhD, PE University of Idaho (208) 885-0139 mlowry@uidaho.edu