

The social cost of physical inactivity in Switzerland in 2011

Renato Mattli, Sascha Hess, Matthias Maurer, Klaus Eichler, Mark Pletscher, Simon Wieser matl@zhaw.ch, 23 February 2015

Funding

This study was funded by the Swiss Federal Office of Public Health

Switzerland

Physical inactivity

physical inactivity increases the risk for several non-communicable diseases

Cost types

Study aim

Definition of physical inactivity

or
75 min of high intensity
physical activity per week

Overview on methods and data sources

Population attributable fraction

Key question: How much of the disease that occurs can be attributed to a certain exposure?

Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy

I-Min Lee, Eric J Shiroma, Felipe Lobelo, Pekka Puska, Steven N Blair, Peter T Katzmarzyk, for the Lancet Physical Activity Series Working Group*

Summary

Background Strong evidence shows that physical inactivity increases the risk of many adverse health conditions, Lancet 2012; 380: 219-29

Population attributable fraction

1. formula (classic «Levin formula»¹)

PAF (%) =
$$\frac{\text{Prevalence}_{\text{exposition total population}}(RR_{\text{unadj}} - 1)}{\text{Prevalence}_{\text{exposition total population}}(RR_{\text{unadj}} - 1) + 1} \times 100 \tag{1}$$

Assumption: no confounding of the relation between exposition and disease exists! 2,3

2. formula

PAF (%) =
$$\frac{\text{Prevalence}_{\text{baseline exposition in group with outcome}} (RR_{\text{adj}} - 1)}{RR_{\text{adj}}} \times 100 \quad (2)$$

² Lee, I.M., et al., Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet, 2012. 380(9838): p. 219-29

¹ Hanley, J., A heuristic approach to the formulas for population attributable fraction. J Epidemiol Community Health, 2001. 55(7): p. 508-14.

Prevalence inactivity: Propensity Score Matching

Propensity score matching with Swiss Health Survey data

- Considered characteristics: smoking, alcohol, eating habits, lifestyle, bmi, sex, education, stress at work, language region, urban/rural
- Was done for each disease separately

Risk ratio: literature search

- cohort studies
- disease not present at study start (causality)
- leisure time physical activity
- general population
- high income countries
- longest follow-up period, no restrictions on follow-up rate
- adjustment for confounders

Study on cost of major NCDs in Switzerland

- total direct medical costs of all NCDs in Switzerland
- productivity losses of seven selected groups of NCDs
- data-based and literature-based approach
- no cost overestimation due to double counting

Results

- 1.8% of total health care expenditures

Prevalence inactivity in cases who finally develop the disease

Risk ratios

Population attributable fractions

Direct medical costs due to physical inactivity (in billion CHF)

due to physical inactivity

residual in total population

Productivity losses due to physical inactivity (in billion CHF)

Total cost composition

total costs 2.5 b CHF

Total cost composition

Univariate sensitivity analysis

Scenario	Direct medical costs	Δ%	Productivity losses	Δ%
	(in billion CHF)		(in billion CHF)	
Basis scenario:				
Basis	1.165		1.369	_
Influence of PAF formula:				
PAF formula (1)	1.391	(+19%)	1.654	(+21%)
Influence of risk ratio:				
Risk ratio lower bound	802	(-31%)	973	(-29%)
Risk ratio upper bound	1.451	(+25%)	1.688	(+23%)

Total costs (in billion CHF): 2.5 (range: 1.8 - 3.1)

Direct medical costs: 1.8% (range: 1.2% - 2.2%) of total health care expenditures

Discussion

– Prevalence:

In cases with outcome: Results same direction as Lee et al., 2012, but lower amount

– Risk ratios:

International risk ratios applicable to Switzerland?

- Population attributable fractions:
 - We applied the formula recommended by Lee et al., 2012
 - SA: Use of formula (1) leads to 20% higher results
- Direct medical costs attributable to physical inactivity:

Globally between 1% and 2.6% of total health care expenditures (Pratt et al., 2014)

- Productivity losses due to physical inactivity:
 - Often not included in studies estimating costs of physical inactivity
 - Janssen, 2012 (Canada): 64% of total costs; Zhang and Chaaban, 2013 (China): 49% of total costs

Conclusions

– Policy implications:

- The problem: Physical inactivity increases the risk for several non-communicable diseases.
- The effect: Close to 2% of total health care expenditures are attributable to physical inactivity. Productivity losses double the amount.
- The solution: Invest in cost-effective interventions to reduce physical inactivity.

– What this study adds:

- Beside cardiovascular diseases, low back pain and depression, two diseases often not included in cost studies related to physical inactivity, significantly contribute to direct medical costs and productivity losses.
- The PAF-formula recommended by Lee et al., 2012 was applied to a cost-of-illness study.

thank you!

