Counting Pedestrians and Cyclists on Multiuse Trails and Other Facilities

HUMPHREY SCHOOL OF PUBLIC AFFAIRS

UNIVERSITY OF MINNESOTA Driven to Discoversm

Trail Counting Workshop

- How many are researchers?
- How many are policy-makers, public managers, or advocates?
- How many are now counting users?
- Why count?
- Goal is exchange of information.
- Please ask questions.

HUMPHREY SCHOOL OF PUBLIC AFFAIRS

Why Count?

- Document use of facilities
- Allocate resources
- Assess efficiency of investments
- Optimize trail operations & maintenance
- Assess exposure rates and need for safety interventions
- Improve systems planning
- Inform and conduct research

The Scientific Method and Public Management

<u>Research Paradigm</u> Scientific Method: focused on	Management Paradigm Problem-Solving Process: focused
producing knowledge; knowledge is end.	on changing status quo; knowledge is instrumental.
1. Observation	1. Goals / Problem Definition
2. Hypothesis	2. Data collection and analysis
3. Experiment	3. Development of alternatives
4. Data collection and analysis	4. Evaluation of alternatives
5. Accept or reject hypothesis	5. Selection of alternative
6. Publish results	6. Implementation

Using Counts in Public Management

- Documenting facility use: Greenways Division, City of Indianapolis, IN
- Resource allocation: Indiana
 Department of Natural Resources
- Traffic control: Department of Public Works, Minneapolis, MN
- Bike facility planning: St. Paul, MN

Monon Trail

Canal Towpath

HUMPHREY SCHOOL OF PUBLIC AFRICE River Trail

Understand Spatial & Temporal Variation in Trail Traffic, Indianapolis, IN (9/04)

	Min	Max	Mean
Week Days	79	2,017	436
Weekend Days	105	3,670	834

Annual Trail Traffic

- Maximum: 606,900
- Minimum : 21,700
- Mean: 146,438
- Median: 101,578

Mean Daily Count

Inform Resource Allocation

- Demand (potential use) of facilities typically not estimated
- Indiana 2004-2005 Trail Funding Program
 - 66 applications; \$73 million requested
 - Only 20 applicants estimated use in proposal
- <u>Mean</u> predicted use: <u>22%</u> higher than segment in Indianapolis with <u>highest</u> traffic volume
- Median predicted use more than double median traffic volume on 30 sites
- Estimates of potential trail use can inform and increase efficiency of investment decisions

HUMPHREY SCHOOL OF PUBLIC AFFAIRS

Inform Traffic Safety: Street-Trail Crossings

Street (mid- block crossing)	Street Average Daily Traffic	Trail Estimated Daily Traffic	Recommendations (selected)
Local 1	420	3,280	Add street stop sign; remove trail stop sign
Local 2	2,026	3,280	Add street stop sign; remove trail stop sign
Local 3	2,400	3,280	Add street stop sign; remove trail stop sign
Local 4	1,680	2,900	Add street yield sign; remove trail stop sign
Minor Arterial	7,267	2,740	Trail stop sign, add overhead flasher; reduce vehicles lanes from 4 to 2 at crossing

Minneapolis Dept. of Public Works , Feb. 15, 2010

Inform Bike Facility Planning

- Proposed Bike Boulevard, St. Paul
 - Neighbors concerned about increases in bike traffic
 - No estimates of potential use available; no methods for estimating
- Use counts from Minneapolis to "guestimate"

	Local Street with Bike Facility (n=11)	Local Street with no Bike Facility (n=52)
12-hour traffic	387	277

- Presence of bike lane: 40% greater bike traffic
- 100 events / 12 hour day = 8 more bikes / hour = 1 more bike / 7 minutes
- Key assumption: bike traffic on local streets with and without bike facilities similar across cities (not good but better than nothing)

Learning Objectives

- How counts of pedestrians and cyclists can inform research, policy, and management,
- How to assess strengths and weaknesses of different methods of counting
- How to develop and use simple planning ratios for extrapolating counts of pedestrians and cyclists
- How to understand approaches to modeling pedestrian and bicycle traffic on facilities
- How to participate in the National Bicycle & Pedestrian Documentation Project

Before Counting

- Define problems or questions
- Different information needed for different questions
 - Facility traffic counts needed for planning, design, and operations
 - Visitor trips needed for benefit-cost analysis
 - Frequency, intensity, and duration of individual trips for health impact analysis
- Choose appropriate methods (e.g., counts vs. surveys)

HUMPHREY SCHOOL OF PUBLIC AFFAIRS

Some Terms

- <u>Traffic count</u>: user past a point; may be same user multiple times on single trip
- <u>User visit</u>: distinct trip by an individual to a facility (may be multiple trips in a day or week by same individual)
- Individual physical activity: frequency, intensity, and duration of use of facility within specified time period

National Bicycle and Pedestrian Documentation Project

- Institute of Traffic Engineers; Alta Planning & Design
- Initiated in 2002, volunteer (not funded)
- Goal is standard methods and national database
- Consistent count dates, times, methods, procedures
 - Purposive (not random) sampling
 - Volunteer training guides
 - Forms for counting
 - Formats for spreadsheets and methods for tabulating
 - Guidelines for submitting

Methods of Counting

- Field observation
- Active infrared
- Passive infrared
- Magnetic loop detectors (in pavement)
- Pressure sensors (piezometric)
- Video imaging, ultrasonic, dopplar radar

Factors to Consider

- How counters work
- Type of data generated
- Quality of data generated; need for calibration
- Ease of deployment (e.g., location, type of facility, relocation)
- Cost of deployment
- Choice of methods is all about trade-offs

HUMPHREY SCHOOL OF PUBLIC AFFAIRS

Minneapolis Example: Methods of Counting

Method of observation	Manual	Magnetic Loop Detector	Active Infrared Counters (beam/sensors)
Traffic observed	Cyclists (bi-directional) Peds (bi-directional)	Cyclists only (bi-directional, potentially)	Cyclists & Peds combined (no directional)
Output	Choice of time units	15 minute blocks	Time of event
Locations for deployment	On and off-street facilities & no facilities	Off-street facilities	Depends on counter type and facility characteristics
Length of observations	Based on staff availability (often two- hour blocks)	Continuous: 24 hours	Continuous: 24 hours
Limitations	Human error	Must calibrate	Must calibrate; systematic undercount (beam counters)

HUMPHREY SCHOOL OF PUBLIC AFFAIRS

Minneapolis Example: Methods of Counting, con't.

Method of observation	Manual	Magnetic Loop Detector	Active Infrared Counters (beam/sensors)
Sources of error	Distractions	Misses riders on edge of trail.	Misses users passing simultaneously
		Direction of riders in wrong lanes recorded incorrectly	
Data recorded	5 – 60 minute time intervals	15 minute counts	Time of "event"; can be aggregated to any time period
Other considerations	Can record groups, some user characteristics	Can't measure user characteristics	Can't measure user characteristics

Considerations in Field Observations

- Need to determine length of sample (< one hour, 1-2 hours, peak hour(s), 12 hours)
- Need to choose locations, number of samples
- Very difficult to collect all information of interest from research perspective: count, gender, race, age, direction, group size, helmet, ...
- Traffic volumes can be very high, distractions common
- Errors in counting are common

Field Observation: Counting Sheet

(Indianapolis, IN, 2004)

- Five minute intervals
- Walkers, cyclists, runners, skaters, babies, other, total, groups, males, females

Hour	Walk	Cycle	Run	Skate	Babies	Other	Total	Groups	Male	Female
00:00 - 04:59										
05:00 - 09:59										

NBPDP Standard Form

- Count for two hours in 15 minute increments.
- Count bicyclists who ride on sidewalk.
- Count number of people on bicycle, not number of bicycles.
- Pedestrians include people in wheelchairs or ... strollers
- People using equipment ... rollerblades ... in other ...

	Bikes		Pedestrians		Others
	Female	Male	Female	Male	
00 - :15					
15 - :30					
30 - :45					
45 – 1:00					
1:00 – 1:15					

Assess Reliability of Manual Counts

Average hourly inter-observer error = 1.4% (n=8)

Comparison Hour	Date	Start Time	End Time	Counter #1	Counter #2	Abs Val Error	Abs Val % Error
1	29 July 2010	9:00	10:00	188	183	5	2.7%
2	29 July 2010	10:00	11:00	183	180	3	1.6%
3	29 July 2010	11:00	12:00	184	183	1	0.5%
4	29 July 2010	12:00	13:00	197	205	8	4.1%
5	29 July 2010	13:00	14:00	218	219	1	0.5%
6	29 July 2010	14:00	15:00	230	233	3	1.3%
7	05 August 2010	11:00	12:00	184	184	0	0.0%
8	05 August 2010	12:00	13:00	202	201	1	0.5%

HUMPHREY SCHOOL OF PUBLIC AFFAIRS

Estimating Hourly Counts from Samples

- Predicting Pedestrian Crosswalk Volumes (Davis, King, and Robertson 1991)
 - Used 5, 10, 15, and 30 minute counts to predict hourly crosswalk volumes
 - Middle 30 minutes is most accurate, but middle 5 is most efficient
- Expansion equations tested for trail traffic (Lindsey & Lindsey 2004)

Expansion Equations for Sample Counts

Davis, King, and Robertson (1988)			Lindsey & Lindsey (2004)			
Counting	Equations	R ²	Counting	Equations	R ²	
Intervals			Intervals			
(minutes)			(minutes)			
Middle 5	V ₁ =19.91*I ₅ ^{.7862}	0.77	Random 5	V ₁ =23.196*I ₅ ^{.6353}	0.69	
Middle 10	V ₁ =9.82*I ₁₀ .8465	0.86	First 10	V ₁ =11.472*I ₁₀ .7662	0.77	
			Middle 10	$V_1 = 12.543 \cdot I_{10}^{.7318}$		
Middle 15	V ₁ =5.75*I ₁₅ .8996	0.91	Last 15	V ₁ =7.252*I ₁₅ . ⁷⁹¹⁸	0.87	
Middle 30	V ₁ =2.37*I ₃₀ .9625	0.96	Middle 30	V ₁ =2.41*I ₃₀ .9517	0.94	
			Last 30	V ₁ =2.624*I ₃₀ .9196		
			Random 30	V ₁ =2.82*I ₃₀ .9128		

Estimating Hourly Counts from Samples

- Pedestrian cross-walk expansion equations
 - are a-theoretical
 - fit data better than equations estimated from trail traffic counts (larger samples)
 - Indicate hourly volumes are essentially double half-hour volumes
- Decision on length of sample period depends on information needs, costs

Magnetic Loop Detector

Raw Data

ĺ	X	(-		-	-	-	-	
	F	ile Ho	me Inse	ert Page	Layout F	ormulas	Data	Review	Vi
	Pa	Cut	y ≠ nat Painter I ⊡	Calibri B I I	• 11 <u>1</u> • Ⅲ • Font	• A .	, * ≡ 1	= <mark>=</mark> %	∕>≁ E ≹
		F9		- (=	f _x				
ľ	4	A	В	С	D	E	F	G	
	1	C900CS Bir	nned Data	File V1.0	12		1	1	
	2	Entry #Dat	eStart Tim	neCh. 1 Cnt	t.Ch. 1 Occ.(Ch. 2 Cnt.	ch. 2 Occ.	Ch. 3 Cnt.	Ch. 3
	962	9602010-0	7-1513:45:	20350.4%4	60.4%				
	963	9612010-0	7-1513:30:	20460.8%3	90.4%	100			
	964	9622010-0	7-1513:15:	20270.4%3	70.4%				
	965	9632010-0	7-1513:00:	20400.4%3	30.4%				
	966	9642010-0	7-1512:45:	20531.2%2	60.4%				
	967	9652010-0	7-1512:30:	20501.2%2	30.4%				
1	968	9662010-0	7-1512:15:	20410.8%3	20.4%				
1	969	9672010-0	7-1512:00:	20430.8%2	60.4%				
	970	9682010-0	7-1511:45:	20370.8%3	40.4%				
	971	9692010-0	7-1511:30:	20510.8%3	00.4%				
	972	9702010-0	7-1511:15:	20270.4%2	20.4%	-			
	973	9712010-0	7-1511:00:	20330.4%1	.50.0%	-			
1	974	9722010-0	7-1510:45:	20250.4%2	60.4%	-			
1	975	9732010-0	7-1510:30:	20510.8%2	20.4%				
1	976	9742010-0	7-1510:15:	20360.8%2	70.4%				
1	977	9752010-0	7-1510:00:	20250.4%5	00.4%				
1	978	9762010-0	7-1509:45:	20631.2%2	90.4%	-			
	979	9772010-0	7-1509:30:	20200.4%1	.80.4%				
-	980	9782010-0	7-1509:15:	20220.4%1	.30.0%				
1	981	9792010-0	7-1509:00:	20190.4%3	10.4%	-			

• Data reported in commaseparated-value (.csv) file in 15minute increments

•Report two "channels" – one for each painted lane

- Cyclists riding in wrong lane can confound directionality results
- Holds 3 months of data
- Can be imported to Excel
- Counter error may differ among locations

HUMPHREY SCHOOL OF PUBLIC AFFAIRS

Calibrating Magnetic Loop Detector Counts (bikes)

HUMPHREY SCHOOL OF PUBLIC AFFAIRS

11

Unive Dri

In On all these, I understand the ppt title is a more general category. Even so, -since the ppt slide title and the graph title are essentially the same, I would just go with the graph, drop the ppt title, and make the image bigger so people can read it. see next slide.-

linds301, 8/31/2010

Active Infrared Trail Monitors (Trailmaster ®, bikes & peds) Raw Data

tm100/	14 - Notepad	a		
File Edit	Format V	/iew Help		
1881 07,	/15/2010	9:00		
1882 07,	15/2010	9:01		
1883 07,	15/2010	9:02		
1884 07,	15/2010	9:02		
1885 07	(15/2010	9:03		
1887 07	/15/2010	9:05		
1888 07	/15/2010	9.05		
1889 07	/15/2010	9:06		
1890 07	/15/2010	9:07		
1891 07	/15/2010	9:07		
1892 07,	/15/2010	9:07		
1893 07,	/15/2010	9:07		
1894 07,	15/2010	9:07		
1895 07,	15/2010	9:0/		
1896 07,	(15/2010	9:08		
1898 07	/15/2010	9:09		
1899 07	/15/2010	9.10		
1900 07	/15/2010	9:11		
1901 07	/15/2010	9:11		
1902 07	/15/2010	9:11		
1903 07,	/15/2010	9:11		
1904 07,	/15/2010	9:11		
1905 07	15/2010	9:12		
1906 07	15/2010	9:13		
1008 07	15/2010	9:13		
1908 07	/15/2010	9.14		
1910 07	/15/2010	9:14		
1911 07	/15/2010	9:14		
1912 07	/15/2010	9:14		
1913 07,	/15/2010	9:15		
1914 07,	/15/2010	9:15		
1915 07,	/15/2010	9:16		
1916 07,	15/2010	9:16		
1018 07	15/2010	9:1/		
1010 07	/15/2010	9:18		
1920 07	/15/2010	9.18		
1921 07	/15/2010	9:19		
1922 07	/15/2010	9:21		
1923 07	/15/2010	0.21		

 Detects each trail user as infrared beam is broken and records timestamp

- Maximum 16,000 observations
- Data reported in text file as stream of dates/times
- Can be imported to Excel as space-delimited text file

Active Infrared Monitors: O&M may be challenging ...

HUMPHREY SCHOOL OF PUBLIC AFFAIRS

Calibrating Active Infrared Counts (bikes & peds)

HUMPHREY SCHOOL OF PUBLIC AFFAIRS

12

12 For this graph, I'd return to the blue dots and red crosses for locations. THis is clearer, and there's no reason to change. By using the same color fo the dots in the scatter plot (i.e., for the same location) you'll add consistency and it will be easier for viewers to interpret. linds301, 8/31/2010

Passive Infrared Counters (Eco-Counter, bikes & peds) Raw Data

🗶 🗐 🛪 🖓 🛪 🖓 🐨 🗮												
File Home Insert Page Layout Formulas Data Review View												
Past	K Cut Copy → te ✓ Format Painter	Arial 18 <i>I</i>	• 10 ⊻ • ⊞ •	• A* A* 3• • <u>A</u> •		= ≫* ≣ 1≢ 1	Wrap Merg	Text				
Clipboard 🕠			Font	Alignment								
	A1	• (*	<i>f</i> ∗ Date									
	A		В	С	D	E	F					
1	Date		Hour	SB004	SB004 OUT	SB004 IN						
38	Thursday 15	Jul 2010	9:00:00 AM	33	11	22						
39	Thursday 15	Jul 2010	9:15:00 AM	28	5	23						
40	Thursday 15	Jul 2010	9:30:00 AM	30	7	23						
41	Thursday 15	Jul 2010	9:45:00 AM	64	16	48						
42	Thursday 15	Jul 2010	10:00:00 AM	43	13	30						
43	Thursday 15	Jul 2010	10:15:00 AM	40	12	28						
44	Thursday 15	Jul 2010	10:30:00 AM	45	9	36						
45	Thursday 15	Jul 2010	10:45:00 AM	32	8	24						
46	Thursday 15	Jul 2010	11:00:00 AM	30	5	25						
47	Thursday 15	Jul 2010	11:15:00 AM	38	7	31						
48	Thursday 15	Jul 2010	11:30:00 AM	49	11	38						
49	Thursday 15	Jul 2010	11:45:00 AM	54	12	42						
50	Thursday 15	Jul 2010	12:00:00 PM	47	8	39						
51	Thursday 15	Jul 2010	12:15:00 PM	50	12	38						
52	Thursday 15	Jul 2010	12:30:00 PM	48	9	39						
53	Thursday 15	Jul 2010	12:45:00 PM	48	7	41						
54	Thursday 15	Jul 2010	1:00:00 PM	43	8	35						
55	Thursday 15	Jul 2010	1:15:00 PM	48	10	38						
56	Thursday 15	Jul 2010	1:30:00 PM	47	7	40						
57	Thursday 15	Jul 2010	1:45:00 PM	38	3	35						
58	Thursday 15	Jul 2010	2:00:00 PM	40	11	29						
59	Thursday 15	Jul 2010	2:15:00 PM	42	8	34						
60	Thursday 15	Jul 2010	2:30:00 PM	57	6	51						
61	Thursday 15	Jul 2010	2:45:00 PM	51	11	40						
62	Thursday 15	Jul 2010	3:00:00 PM	68	12	56						

•Detects trail users' infrared heat signatures

•Differentiates direction (i.e. left-to-right vs. right-to-left)

Holds one year of data

Data imported in Excel in 15-minute increments

HUMPHREY SCHOOL OF PUBLIC AFFAIRS

Calibrating Passive Infrared Counter

HUMPHREY SCHOOL OF PUBLIC AFFAIRS

Counter Correction Equations: Variation in Adj. R²

Counter and Unit	Bike & Ped Count	Bike & Ped Eastbound	Bike & Ped Westbound	Bike Count	Bikes Eastbound	Bikes Westbound
Magnetic Loop (Hennepin)	-	-	-	0.9806	0.9685	0.9569
Magnetic Loop (W R Parkway)	-	-	-	0.9734	0.9760	0.9335
Passive Infrared #004	0.5896	0.5365	0.2847	-	-	-
Passive Infrared # 003	0.9215	0.9227	0.1697	-	-	-
Passive Infrared #001	0.8841	0.7979	0.0723	-	-	-
Active Infrared (Hennepin)	0.9941	-	-	-	-	-
Active Infrared (W R Parkway)	0.9953	-	-	-	-	-

A Calibration Problem: Loop Detector Counts (bikes) > Infrared Counts (bikes & peds)

Hennepin Ave. Counter Site (Dec 2009 & Jan 2010)

OF PUBLIC AFFAIRS

Working with Counts

- Objective is to understand and use of patterns in data
 - Seasonality and monthly variation
 - Day of week (weekend and weekday)
 - Time of day (peak hour)
- Patterns differ by mode
 - bike vs. pedestrian
 - type of facility (on-street vs. off-street)

Temporal Patterns in Trail Traffic

Seasonal Variation in Daily Counts (Indianapolis, IN)

Monthly Traffic Ratios (Indianapolis)

(Indianapolis, $n = \pm 30/month$)

Mean Daily Bike Traffic Volumes (Midtown Greenway, Minneapolis MN)

HUMPHREY SCHOOL OF PUBLIC AFFAIRS

UNIVERSITY OF MINNESOTA Driven to Discover

Monthly Scaling Factors (Monthly Traffic Bike Traffic / December Bike Traffic)

HUMPHREY SCHOOL **OF PUBLIC AFFAIRS**

UNIVERSITY OF MINNESOTA Driven to Discover[®]

Monthly Traffic Ratios (scaling factors) for Greenways in Minneapolis and Indianapolis

Minneapolis traffic ratios show greater seasonality.

Differences could be associated with differences in counts (bikes vs. bikes & peds), characteristics of trails, or cultural or geographic factors.

HUMPHREY SCHOOL OF PUBLIC AFFAIRS

UNIVERSITY OF MINNESOTA
Driven to Discover

Hourly Bike & Ped Counts

- Hourly bike and ped traffic varies by
 - facility type
 - day of week (weekend-weekday)
 - season
- Weekday peak hour traffic typically occurs between 5:00 p.m. and 7:00 p.m.
- Weekend peak hour typically traffic occurs in late morning or early afternoon
- Peak hour higher for off-street facilities with more recreational use

Time of Day (Hourly) Traffic Patterns Vary by Mode and Facility (Minneapolis MN)

HUMPHREY SCHOOL OF PUBLIC AFFAIRS

UNIVERSITY OF MINNESOTA Driven to Discover

Trail Peak Hour Counts

HUMPHREY SCHOOL OF PUBLIC AFFAIRS

UNIVERSITY OF MINNESOTA Driven to Discover

Weekday Peak Hour Trail Traffic Varies Seasonally (11% - 17%) (Indianapolis, n=30)

Weekend Peak Hour Trail Traffic Varies Seaonally (10% - 16%) (Indianapolis, n=30)

HUMPHREY SCHOOL OF PUBLIC AFFAIRS

UNIVERSITY OF MINNESOTA Driven to Discover[®]

Hourly Adjustment Factors: 12-Hour On-street Traffic Volumes (Minneapolis MN)

	Bicycle			Pedestrian		
Time period	Percent of 12-hour count	Adj. factor	R²	Percent of 12-hour count	Adj. factor	R²
7-8am	7.5%	13.2	0.88	6.9%	14.5	0.91
8-9am	9.3%	10.7	0.90	5.3%	18.7	0.96
9-10am	7.8%	12.9	0.89	6.1%	16.4	0.97
10-11am	6.4%	15.6	0.89	5.9%	16.8	0.96
11-noon	5.9%	16.9	0.87	9.2%	10.9	0.99
noon-1pm	5.2%	19.1	0.77	9.7%	10.3	0.99
1-2pm	7.2%	14.0	0.88	8.7%	11.5	0.99
2-3pm	7.5%	13.3	0.84	8.8%	11.4	0.98
3-4pm	9.3%	10.8	0.90	7.8%	12.8	0.98
4-5pm	12.0%	8.4	0.93	10.4%	9.6	0.97
5-6pm	12.6%	7.9	0.89	12.3%	8.2	0.996

Example:

Multiplying 4-5 pm traffic by 8.4 yields 12-hour traffic volume.

Estimated 12-hour Bike Traffic Highly Correlated with Actual 12-hour Traffic

HUMPHREY SCHOOL OF PUBLIC AFFAIRS

UNIVERSITY OF MINNESOTA Driven to Discover

Weekend-Weekday Trail Traffic Ratios (bikes&

(bikes & peds; Indianapolis, n=30)

Weekend-Weekday Trail Traffic Ratios

(bikes; Minneapolis)

Driven to Discover[®]

OF PUBLIC AFFAIRS

Using Traffic Ratios to Extrapolate

- 1. Sample trail traffic during weekday peak hour
- 2. Use peak hour proportions to estimate weekday daily traffic
- 3. Use weekend-weekday traffic ratios to estimate weekend daily traffic
- 4. Aggregate daily estimates to obtain monthly traffic;
- 5. Use monthly traffic ratios to estimate traffic for other months and annual traffic; and
- 6. Impute annual visits from annual traffic.
- Example: Using mean peak hour traffic 9/12-9/16 to estimate monthly and annual traffic

HUMPHREY SCHOOL OF PUBLIC AFFAIRS

UNIVERSITY OF MINNESOTA Driven to Discover

Monthly and Annual Traffic Estimates (Monon Trail with site (M67) and median ratios)					
	Counter (actual)	M67 ratios (% error)	Median ratio (% error)***		
 Weekday mean peak hour traffic 	255				
 Weekday average estimate 	1,534	1,567 (2.1%)	1,851 (20.7%)		
Weekend Day Traffic		2,820	2,961		
Monthly Traffic	68,647	57,035 (-16.9%)	64,406 (-6.2%)		
Annual Traffic	606,906	471,067 (-22.4%)	484,489 (-20.2%)		

A Conceptual Model of Trail Use

For individual i living in zone j,

 $\mathsf{P}_{ijkl} = \mathsf{f}(\mathsf{C}_i, \mathsf{R}_j, \mathsf{S}_k, \mathsf{D}_{jk}, \mathsf{T}_{kl})$

 $\begin{array}{l} \mathsf{P}_{ijkl} = \text{probability of individual i in zone j traveling to} \\ \text{access point k and then using the trail to destination l.} \\ \mathsf{C}_i = \text{characteristics of individual i} \\ \mathsf{R}_j = \text{characteristics of area j} \\ \mathsf{S}_k = \text{characteristics of access points k} \\ \mathsf{D}_{jk} = \text{distance and other characteristics of trip from j to k} \\ \mathsf{T}_{kl} = \text{characteristics of trail from k to l} \end{array}$

Modeling Multiuse Trail Traffic

Primary Aims

- 1. Establish objective measures of urban trail traffic
- 2. Identify correlates of trail traffic
- 3. Explain and predict spatial variation in trail traffic

The General Approach (Indianapolis)

- Model traffic on facility (not individuals)
 - Observe trail traffic in field
 - Monitor trail traffic with infrared counters
 - Collect secondary data
 - Measure neighborhood and trail characteristics using remote sensing and GIS
 - Estimate statistical models

Traffic Counts: Infrared Counters

- 30 locations in diverse neighborhoods on a five trail, 33 mile network
 - 4 locations: November 2000 December 2005
 - 2 locations: September 2002 December 2005
 - 24 locations: May 2004 December 2005
- Analyses
 - 18,142 daily counts (92.7% of days through 7/05)
 - 24,177 through 12/05

Models of Trail Traffic

- Trail traffic modeled as function of
 - Day of week
 - Month of year
 - Daily weather (temperature, precipitation, sunshine, snow: deviations from normal)
 - Neighborhood socio-demographics
 - Neighborhood urban form
 - Trail characteristics including <u>viewsheds</u>
- Socio-demographic and urban form variables measured for neighborhoods along trail or pedestrian access zones
- Models explain > 80% of variation in daily trail traffic (bikes & peds)

Trail Monitor Neighborhoods

- Pedestrian access zones or catchments
- Defined by ½ mile street network from monitor locations
- Census data aggregated for neighborhood sociodemographic characteristics
- Greenways
- ! Counter Locations
 - Counter Neighborhoods
 - Major Roads
- Counter Networks (1/2 mile)
- Marion County Boundary

Correlates of Trail Traffic (controls)

Temporal	Hypothetical Effect	Measured Effect	
Weekend	positive	positive	
Jan – Nov	positive	positive	
StateFair	positive	positive	
Weather			
Temperature deviation from normal (squared term)	positive	positive	
Precipitation deviation from normal	negative	negative	
Snow deviation from normal	negative	negative	
Sunshine deviation from normal	positive	positive	

Neighborhood Variables

Socio-demographics Characteristics	Hypothetical Effect	Measured Effect	
% Population less than 5 and greater than 64	negative	negative	
% African American	negative	depends on model	
% other ethnicity, exclude White and African American	negative	depends on model	
Mean % Population 25+ with College Degree	positive	positive	
Mean Median Household Income, in dollars	positive	positive	
Urban Form			
Population density in 1/2 mile network distance to monitor	positive	positive	
Percentage of commercial land use in trail neighborhood	positive	positive	
Parking lots (Square Feet) in trail neighborhood	positive	positive	
Average length of network street segments within 1/2 mile of counter;	negative	positive	

Trail Segment Characteristics

Description of Trail Segment Characteristics	Hypothetical Effect	Measured Effect
Openness: Percent total area visible within ½ mile of trail segment	positive	positive
Interconnectedness: Average value of visual magnitude for segment	positive	positive
Land Use Diversity: Shannon's Diversity Index of land use in viewshed	positive	positive
Greenness: Difference between mean NDVI in neighborhood and trail viewshed	positive	positive
Percent Not Paved: Percent trail length with non-paved surface (e.g., gravel)	negative	negative
Railroad Xing: Number of railroad crossings at grade	negative	negative
Trail Intersection	positive	negative
Amenity Density: Number art, bench, signs divided by segment length	positive	positive
Average slope along trail segments	?	depends on model
Sinuosity of trail segment	? (positive for nature trails)	depends on model
Road Xing Density: Segment length / number of road crossings at grade	negative (interrupts use) positive (access)	depends on model

Effect of Temperature Varies Seasonally

 Temperature 10F > daily average correlated with significant change in daily trail traffic

Effect of Precipitation Varies Seasonally

 Precipitation 1 inch > daily average correlated with significant drop in daily trail traffic

Effect of Sunshine Varies Seasonally

 Sunshine 10% > daily average correlated with significant increase in daily trail traffic

Model with Neighborhood Access Zones: Predicted & Actual Traffic Monon Trail (M67 Site), 9/11-9/17

Tract Model (no urban form variables) Predicted and Actual Traffic (Monon Trail (M67) Site, 9/11-9/17)

Model Error in Traffic Estimates: Ranges from 18% - 39%					
		Best Mo	del	Tract Model	
	Mean Actual Daily Traffic	Mean Predicted Daily Traffic	Error (%)	Mean Predicted Daily Traffic	Error (%)
M67 Site	2176	1771	-18.2	1674	-20.7
PLR3 Site	136	104	-25.1	164	-39.2

OF PUBLIC AFFAIRS

Driven to Discover

Predicting Bike & Ped Traffic on Streets & Sidewalks (Minneapolis)

- 12-hour traffic volume = f(
 - Daily weather (temperature, deviation from average temperature, precipitation, wind speed)
 - Neighborhood characteristics and form (population age, income, education, race, population density, land use mix, employment accessibility, crime)
 - Traffic infrastructure type (street type, presence of bike facility, type of bike facility)
 - Other factors (variables to be added)
- Bike traffic model: Adj. R² = 0.275
- Pedestrian traffic model: Adj. R² = 0.377

Data and Methods: Counts and Correlates of Traffic

- Counts: Minneapolis DPW and Transit for Livable Communities (manual; n=458)
- *Type of bike facility*: Minneapolis DPW
- Street/road classification: Metropolitan Council
- Bus lines: Metro Transit
- *Daily weather*: National Oceanic and Atmospheric Administration (NOAA)
- Neighborhood demographics: U.S. Bureau of the Census
- *Neighborhood land use*: City of Minneapolis

Mean Bike Traffic Volumes by Street & Facility Type

(Minneapolis, 12-hour observations (6:30 a.m. – 6:30 p.m.; n=458)

On-Street Bike Lane None

Pedestrian Traffic Volumes by Street Type

(Minneaposlis, 12-hour observations (6:30 a.m. – 6:30 p.m.; n=453)

	Principal Arterial	A-Minor	B-Minor	Collector	Local	All Streets	Trails
Observations	6	160	72	58	63	359	94
Maximum volume	150	18,153	6,230	13,424	1,476	18,153	14,779
Mean 12 hour volume	87	1,005	939	1,447	355	934	440
Median volume	86	674	315	461	230	443	114
Minimum volume	36	0	43	4	0	0	0
Average hourly volume	7	84	78	121	30	78	37

HUMPHREY SCHOOL OF PUBLIC AFFAIRS

Pedestrian Volumes, Bus Lines, & Trails

(Minneaposli, 12-hour observations (6:30 a.m. – 6:30 p.m.; n=453)

	On Bus Route	None
Observations	266	97
Maximum volume	18,153	8,492
Mean 12 hour volume	1,123	531
Median volume	554	229
Minimum volume	0	0
Average hourly volume	94	44

HUMPHREY SCHOOL OF PUBLIC AFFAIRS

Regression Model Results

Weather Variables	Effect on Bicycle Traffic	Effect on Pedestrian Traffic
Maximum daily temperature	+++	Not significant
Deviation from average temperature		Not significant
Precipitation (any)	-	Not significant
Wind speed (average)	Not significant	Not significant
-, + significant at 10% level , ++ significant at 5% level ,+++ significant at 1% level		

Neighborhood Variables*	Effect on Bicycle Traffic	Effect on Pedestrian Traffic
% Population > 65, < 5	++	Not significant
Median household income	Not significant	
% Population with college degree	++	+
% Black population	-	Not significant
% Other race	Not significant	Not significant
Population density	Not significant	Not significant

*Estimated for Census block group where counting location falls

-, + significant at 10% level

--, ++ significant at 5% level

---,+++ significant at 1% level

HUMPHREY SCHOOL OF PUBLIC AFFAIRS

Neighborhood Variable*	Effect on Bicycle Traffic	Effect on Pedestrian Traffic
Violent crimes per capita		
Employment accessibility	+++	+++
Land use mix	+++	+++
*Estimated for Census block group where counting I -, + significant at 10% level , ++ significant at 5% level ,+++ significant at 1% level	ocation falls	

Road Infrastructure Variable	Effect on Bicycles (relative to local street, no bike facility)
Principal arterial with bike facility	No counts
Minor arterial with bike facility	+++
Collector with bike facility	Not significant
Local with bike facility	Not significant
Principal arterial, no facility	Not significant
Minor arterial, no facility	Not significant
Collector, no facility	Not significant
Off-street bike facility	+++
Presence of bus line	Not significant
Local, no facility	(base case)
-, + significant at 10% level , ++ significant at 5% level	

HUMPHREY SCHOOL OF PUBLIC AFFAIRS

Road Infrastructure Variable	Effect on Peds (relative to off-street facility)
Principal arterial	Not significant
Minor arterial	Not significant
Collector	+++
Local	Not significant
Presence of bus line	Not significant
Off-street bike facility	(base case)
-, + significant at 10% level , ++ significant at 5% level ,+++ significant at 1% level	

Observations

- Bike and ped traffic varies temporally and spatially in consistent patterns
- Bike and ped traffic is highly correlated with:
 - Weather, month, day of week
 - Socioeconomic status of neighborhoods
 - Some aspects of urban form and facility characteristics
- Models have limitations
 - Theoretical models are incomplete (e.g., crime)
 - Correlation is not causation

Potential Uses of Counts and Models

- Inform counting and evaluation strategies (e.g., increase efficiency of field sampling)
- Generalize ad hoc counts using seasonal, day-ofweek, and time-of-day ratios (i.e., scaling factors)
- Inform planning and investment decisions about future bicycle and pedestrian infrastructure
- Inform safety management (e.g., stoplight warrants)
- Improve urban design
- Facilitate interdisciplinary research (e.g., health impacts of cycling or walking on busy streets)
- Support initiatives to enhance quality of life

Observations

- All counts and models are "wrong"
- Modest efforts can produce useful estimates
- Estimates helpful for many policy, managerial, and operational decisions
- Research can inform policy and management

A Call to Count!

- National Bicycle and Pedestrian Documentation Project
- Faculty researchers and instructors
 - Great opportunity for civic engagement
 - Engage students in counting
 - Modular approaches to collection of data

National Bicycle & Pedestrian Documentation Project

- Bike-Pedestrian Counting Equipment 101
- Adjustment Factors
- NBPD Counts Training
- NBPD Survey Training
- NBPD Facts and FAQs

Alta Design (http://bikepeddocumentation.org/)

HUMPHREY SCHOOL OF PUBLIC AFFAIRS

