ETHNIC DISPARITY IN

Environmental Support for Children's Walking to School

BY:

Xuemei Zhu, Ph.D. Candidate; Chanam Lee, Ph.D. College of Architecture, Texas A&M University Active Living Research 2007 Conference, Coronado, CA

I. Introduction

II. Methods

A. GIS MeasuresB. Field AuditsC. Data Analysis

III. Results

IV. Discussion

INTRODUCTION

- 1. Built environment and children's walking to school
 - Insufficient empirical knowledge to guide effective interventions
 - Limited methods to assess walkability and safety
 - Lack of understanding on ethnic disparities
- 2. Needs for specific attention on Hispanic children
 ►High risk of developing obesity prone to physical inactivity
 ►Limited transportation mobility forced to walk to school
 - Exposure to poor walking environments
- 3. Understudied aspects for built environment and general walking of adult populations
 - ► Relationship between
 - <u>neighborhood-level</u> walkability (urban forms and land uses) and <u>street-level</u> walkability (urban design and architectural qualities)
 - ► Relationship between *walkability* and *safety*
 - Low-income, minority neighborhoods in high-density, urban areas

INTRODUCTION

AIMS:

- To examine different aspects of the environment potentially associated with children's walking to school and the relationships among them
- To explore disparity issues by examining the differences in walkability and safety of the school's attendance areas, based on the percentage of Hispanic students

HYPOTHESIS:

Schools with higher percentages of Hispanic students have <u>higher</u> <u>neighborhood-level</u> (i.e. attendance area's) <u>walkability</u>, yet <u>more</u> <u>dangers from traffic and crime</u>, and <u>lower street-level walkability</u>.

METHODS

DESIGN: cross-sectional study

► SETTINGS:

73 public elementary schools in Austin, TX, with a wide range in the %

of Hispanic students (mean = 59.1%)

► MEASURES:

1. <u>GIS measure</u> for neighborhood-level walkability and safety 2. <u>Field audits</u> for streetlevel walkability 3. Spatial autocorrelation

and Gini coefficient

A. GIS MEASURES

Unit of analysis: school's attendance area

TABLE 1. Definitions, equations, descriptive statistics, and Gini coefficients for variables of neighborhood-level walkability and safety

Variable	Definition	Equation	Mean	SD	Gini coefficient
Neighborhoo	d-level walkability				
Distance to school	Percentage of residential units located within half a mile street network distance from school	Number of residential units located within half a mile street network distance from school / total number of residential units	0.343	0.198	0.322
Pedestrian Facilities	Sidewalk completeness	Total miles of sidewalks / (total miles of streets * 2)	0.267	0.137	0.286
- defines	Traffic signal density	Number of traffic signals / total miles of streets	0.266	0.198	0.361
Residential density	Gross population density	Total population / total acres of the area	6.815	3.717	0.305
Street	Street density	Total footage of streets / total acres of the area	136.067	48.678	0.195
connectivity	Street intersection density	Number of street intersections (> 3-way) / total acres of the area	0.197	0.113	0.287
Land-use mix	^a Evenness of distribution of residential (R), commercial (C), and office (O) land use	(-1) * [(area of R / total area of R, C, and O) * In (area of R / total area of R, C, and O) + (area of C / total area of R, C, and O) * In (area of C / total area of R, C, and O) + (area of O / total area of R, C, and O) * In (area of O / total area of R, C, and O)] / In (number of land use present)	0.451	0.242	0.305
Safety					
Traffic safety	Average traffic volume	Average daily traffic count of sampled locations	8552.000	3873.000	0.250
	Percentage of high-speed streets	Total footage of streets with speed limit > 30 miles per hour / total footage of all streets	0.208	0.077	0.211
Crime safety	Offenses per 1,000 persons per year	(Number of offenses in year 2004 and 2005 * 1000) / (total population *2)	238.976	182.432	0.334

SD, standard deviation

^a The measure for land-use mix was adopted from the SMARTRAQ study [24].

A. GIS MEASURES

B. FIELD AUDITS

- 1. SAMPLING:
 - A <u>200-meter street</u> <u>segment</u>, close to the geographic center of the school's attendance area, and:
- has a posted speed limit of 30 mph;
- has > 80% of road-side parcels being residential development;
- has sidewalks on at least one side of the street;
- ▶ is not a dead-end street.

2. INSTRUMENT:

- ►Adopted from PEDS
- Intraclass Correlation
 Coefficients tested

for street-level walkability (urban design & architectural qualities)

B. FIELD AUDITS

Unit of analysis: 200-meter street segment

Table 2. Intra-class coefficients (ICCs), descriptive statistics, and Gini							
Variable	Single Average Mean SD measure measure or %			SD	Gini coeffici		
	ICC	ICC			ent		
Subjective variables measured on five-point Likert scale							
Sidewalk maintenance	0.619	0.764	2.676	0.728	0.152		
Road maintenance	0.559	0.717	3.179	0.581	0.101		
Building maintenance	0.770	0.870	2.556	0.777	0.170		
Visual quality of buildings	0.741	0.851	2.460	0.742	0.163		
Degree of tree shade	0.681	0.810	2.684	0.813	0.158		
Degree of enclosure	0.322	0.487	2.705	0.599	0.115		
Degree of surveillance from	0.405	0.577	2.775	0.533	0.107		
windows overlooking sidewalks							
Air quality	0.172	0.294	3.397	0.499	0.078		
Quietness (noise level)	0.377	0.547	3.020	0.767	0.140		
Overall convenience	0.576	0.731	2.921	0.680	0.130		
Overall visual quality	0.658	0.794	2.620	0.695	0.146		
Overall amenities	0.625	0.769	2.461	0.718	0.162		
Overall maintenance	0.723	0.839	2.487	0.783	0.176		
Overall perceived safety	0.536	0.698	2.916	0.635	0.123		

(To be continued)

B. FIELD AUDITS

Unit of analysis: 200-meter street segment

(Continued) Table 2. Intra-class coefficients (ICCs), descriptive statistics, and Gini coefficients for variables of street-level walkability^a Variable Average Mean SD Gini Sinale coeffici measure measure or %ICC ICC ent Objective variables measured with absolute values 0.361 Sidewalk's distance from curbs (ft) 2.726 1.850 - -Sidewalk width (ft) 4.137 0.502 0.056 - -- -Number of connections to other 0.850 0.981 0.598 - sidewalks/crosswalks Buildings' setback from roads (ft) 0.771 32.185 12.101 0.170 0.871 Objective variables measured with binary values (1 = yes; 0 = no)0.425 Presence of slope 57.6% - -- -- -Presence of sidewalk obstructions 45.2% 0.548 - -- -Presence of buffers between 74.0% 0.260 sidewalks and roads Presence of on-street parking 94.5% 0.055 - -- -- -Presence of power lines 39.7% 0.603 - -

^a Some other variables were also measured in field audits, yet reached same results for all sample segments. These constructs were sidewalk material (concrete), presence of pedestrian-oriented lighting (no), presence of off-street parking lots (no), the need to walk through parking lots in order to access buildings (no), number of lanes (2), and presence of street furniture (no). SD, standard deviation

B. FIELD A DITS

Photos from field audits

Low street-level walkability

C. DATA ANALYSIS

1. Exploratory Analysis

- Spatial autocorrelations and Gini coefficients to understand the relative magnitude of disparity
- GIS Maps to understand spatial patterns

2. <u>Regression Analysis</u>

examined the association between the percentage of Hispanic students within school and each environmental variable

(The % of Hispanic students was converted into a five-category variable based on the percentiles, and treated as a continuous variable.)

- Simple linear regression for continuous variables
- Binary logistic regression for dichotomous variables

3. Analysis of Variance

compared the means of the environmental variables for the bottom and the top quartile schools, based on the % of Hispanic students

4. Pearson Correlation and Factor Analysis

explored relationships among various environmental variables

HYPOTHESIS:

Higher percentages of Hispanic students in the school is associated with

- Higher neighborhood-level walkability
- More dangers from traffic
- More dangers from crime
- Lower street-level walkability

s ^a and And	alysis of Vo	ariance (ANOVA) ^b
Linear regression			ANOVA
β	Standard R ^e		EMD
	error		
(+)			(+)
0.072**	0.014	0.521	0.279**
0.040**	0.010	0.178	0.150**
			0.099*
1.167**	0.274	0.204	4.268**
8.234*	3.895	0.059	
			0.082**
0.055**	0.019	0.108	0.165*
<u>(+)</u>	••		(+)
47.300**	13.965	0.139	162.4**
	s ^α and And Line β (+) 0.072** 0.040** 0.040** 1.167** 8.234* 2 0.055** 0.055**	sa and Analysis of Value Linear regress β Standar 0.072** 0.014 0.040** 0.010 0 1.167** 0.274 8.234* 3.895 0.019 0.055** 0.019 47.300** 13.965	s ^α and Analysis of Variance (Linear regression β Standard R ² error (+) 0.072** 0.014 0.521 0.040** 0.010 0.178 0.040** 0.010 0.178 1.167** 0.274 0.204 8.234* 3.895 0.059 0.055** 0.019 0.108 47.300** 13.965 0.139

To be continued.

(Continued) Table 3. Results from Regre	ession Anc	alysis ^a and A	nalysis o	of Variance ^b
Variable	Linear regression			ANOVA
	β	Standard error	<i>R</i> ⁰	EMD
Street-level walkability				
Subjective variables (measured on fiv	e-point Lil	cert scale)		
Sidewalk maintenance	-0.189**	0.056	0.140	-0.879**
Road maintenance				
Building maintenance	-0.282**	0.055	0.273	-1.206**
Visual quality of buildings	-0.268**	0.052	0.271	-1.156**
Degree of tree shade				
Degree of enclosure				-0.425*
Degree of surveillance from windows overlooking sidewalks				
Air quality (n = 70)	-0.108**	0.039	0.097	-0.625**
Quietness (noise) (n = 72)	-0.166**	0.060	0.096	-0.730**
Overall convenience	-0.113*	0.055	0.057	-0.518*
Overall aesthetics	-0.242**	0.050	0.251	-1.035**
Overall amenities (n = 72)	-0.258**	0.051	0.267	-1.069**
Overall maintenance	-0.277**	0.056	0.260	-1.127**
Overall perceived safety	-0.210**	0.046	0.226	-0.866**
To be continued.	(-)			(-)

(Continued) Table 3. Results from Regression Analysis^a and Analysis of Variance (ANOVA)^b

Variable	Linear regression			ANOVA	
	β	Standard	R ^e	EMD	
	-	error			
Street-level walkability					
Objective variables (measured with absolut	e values)				
Sidewalk's distance from curbs					
Sidewalk width (unit: feet)					
Number of connections to other					
sidewalks/crosswalks		_			
Buildings' setback from roads	-2.361*	0.958	0.079	-10.374**	
Objective binary variables (0 = no, 1 = yes)) Log	gistic regre	essione		
	β	Standard	Estimated		
		error	odds ratio		
Presence of slope	-0.658**	0.196	0.518		
Presence of sidewalk obstruction	(0.290) ^d	(0.170)	(1.336)		
Presence of buffers between sidewalks					
and roads					
Presence of on-street parking	(1.725)	(0.957)	(5.614)		
Presence of power lines	(0.299)	(0.174)	(1.348)		

^a In the Linear Regression, the percentage of Hispanic students was converted into a five-category variable and treated as a continuous variable. N = 73, unless specifically noted

^b In the ANOVA, the estimated mean difference (EMD) was calculated between the top quartile with the highest percentage of Hispanic students and the bottom quartile.

^c A natural logarithm transformation was used for intersection density in ANOVA.

^d Results in the parenthesis were marginally significant at the 0.1 level.

** P < 0.01; * P < 0.05; β , unstandardized beta coefficient

Pearson correlations and Factor Analysis

examined relationships among various environmental variables

 Table 4. Factor analysis for standardized scores of variables for macro-level

 walkability and safety

	Component			
	1	2	3	
Distance (% of residential units within 1/2 mile street network distance)	0.672	0.289	-0.308	
Sidewalk completeness	0.190	0.808	0.102	
Traffic signal density	0.553	0.234	0.627	
Population density	0.302	0.857	-0.008	
Street density	0.780	0.420	0.101	
Street intersection density	0.808	0.330	0.078	
Land-use mix	0.408	0.215	0.640	
Traffic volume	-0.169	0.452	0.657	
Percentage of high-speed roads	-0.029	-0.339	0.741	
Crime rate	0.804	-0.181	0.296	

V DISCUSSION

- Important to address crime prevention and improvement of street-level walkability in <u>low-</u> income, Hispanic neighborhoods
- Need for a comprehensive approach in research and promotion efforts to encourage walking to school
 - <u>Neighborhood-Level</u> Walkability (urban forms and land uses) vs. <u>street-Level</u> Walkability (urban design qualities)
 - <u>Walkability</u> vs. <u>Safety</u>
- Need to consider composite measures to capture the environmental support of walking to school
- Need for tailored intervention strategies for specific geographic contexts and populations

Questions?

DARITON MARINE