

Harvard Prevention Research Center on Nutrition and Physical Activity

Developing and Evaluating Objective Measures of Outdoor Walking Facilities: Project Overview & Update*

Active Living Research Annual Conference Del Mar, California January 30-31, 2004

*Funded by: The Robert Wood Johnson Foundation, Active Living Research Program

Southwest Corridor: Boston, MA

Our Interdisciplinary Team

- Public health, geography, landscape architecture
- Philip Troped, PI, Harvard School of Public Health
- Ellen Cromley, Co-PI, University of Connecticut, Dept. of Geography
- Co-Investigators: Hope Hasbrouck, Harvard School of Design, and Steve Gortmaker, HSPH
- Other team members: Maren Fragala & Steve Melly
- Local & national consultants

GPS Data Collection at Franklin Park, Boston, MA

<u>Project Aims</u>

- Develop objective GIS measures of the physical characteristics of six outdoor walking facilities in urban, suburban & rural communities in MA
- Develop & assess the reliability of a path/trail data collection tool Path Environment Audit Tool (PEAT)
- 3. Assess strengths & limitations of multiple methods used to measure physical characteristics of trails
- 4. Document GIS & other study methods
- 5. Disseminate findings through multiple venues

<u>Research Approach: Components</u>

- 1. Formative work to identify/prioritize key physical characteristics & identify study sites
- 2. Development of data collection tools & protocols
- Data collection GPS, paper & pencil observations (PEAT), identifying & downloading existing GIS data layers
- 4. Processing & analysis of data testing reliability of observation tool, constructing GIS measures
- 5. Summarizing findings, including a critique of study methods, measures & estimated costs

Characteristics of Study Sites

Recuttles Cuttles

Rhua River

Bitemen -

enklin Art

South west

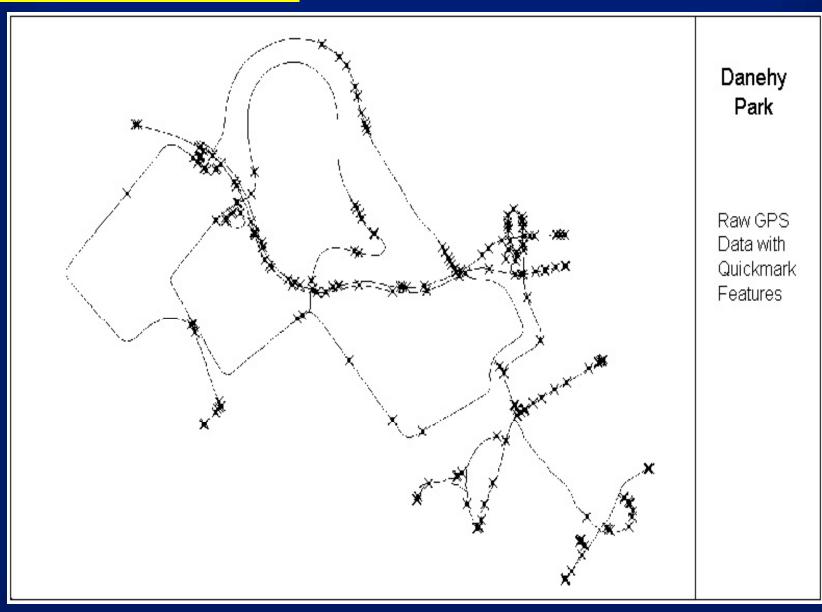
Approach to Selecting Measures

- Apply social cognitive theory, ecological models & behavior settings construct
- Develop measures based on research & practice guidelines from physical activity, landscape architecture, urban planning & parks and recreation
- Gather & incorporate information from local users (i.e., intercept surveys at 2 sites)
- Develop measures of both trail (site) and neighborhood contextual (situation) characteristics

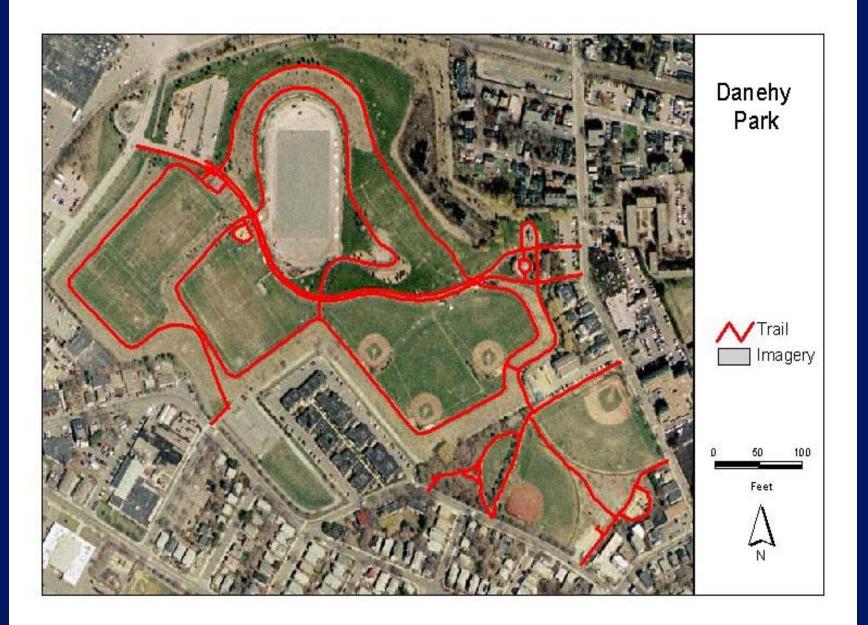
<u>Developing Measures: 3 Primary</u> <u>Methods</u>

- 1. Collect detailed trails data with high-level GPS unit
- 2. Develop *Path Environment Audit Tool (PEAT)* & collect supplemental trail data
- Obtain & integrate existing GIS data layers (e.g., 2000 U.S. Census data)

Physical Characteristics


Physical Characteristics	Data Source(s)	Examples - Derived Variables
Design features (e.g., surface type & condition, trail width, grade)	GPS PEAT (paper & pencil tool)	% pavedMean width
Amenities (e.g., presence & condition of pay phones, lighting, restrooms)	GPS PEAT	 Mean # lights/mile or trail segment % restrooms in good condition
Aesthetics (e.g., water body adjacent to trail, litter, graffiti)	GPS PEAT GIS data layer	 density litter/trail segment
Situation or contextual variables (e.g., residential density within buffer of trail)	GPS GIS data layers	 % of buffer that is residential, mixed use or commercial.

Overview of GPS Data Collection


- Aim: obtain accurate spatial data on trail attributes (e.g., surface type) and site amenities (e.g., lighting)
- Rationale: adequate spatial data on trails and paths not available
- Methods: used Trimble GPS Pathfinder Pro XR receiver, a TSCI Asset surveyor (hand-held) & Trimble Pathfinder software
 - 3-4 person teams from UConn & Harvard
 - Collected GPS data on > 40 miles of paths

Raw GPS Data

Danehy Park

Danehy Park Trail Network: From GPS

GPS Results: Counts of Amenities

	ŝ	Inwest dor Corridor	in Park	and Park Ci	the servation Minut	eman av	River
Amenity	GOV	Co Fran	030	s C	Rese Mint	BIT Nashu	Rain
Lighting	467	59	21	0	12	0	
Garbage cans	158	123	31	3	21	2	-
Signs	186	29	32	25	150	113	
Benches	101	71	42	5	21	7	
Picnic tables	1	36	32	0	3	0	
Telephones	0	0	3	0	1	0	
Emergency call boxes	0	0	3	0	0	0	
Restrooms	0	7	5	0	3	2	
Drinking fountains	0	3	4	0	2	0	

- Aim: conduct observations on amenity attributes (e.g., cleanliness of benches) & integrate with GPS data
- Create an Access-based tool for PEAT use in field with tablet PC (*currently pretesting*)
- Use GPS trails data to create functional unit of observation (approx. 400 m) – PEAT segments
- Collect data on all PEAT segments using Tablet PC, maps created from GPS & hand-held GPS to identify location
- Two observers will conduct observations at 6 sites

Integration of GIS Data Layers

- Led by Dr. Ellen Cromley & Steve Melly, team identified "useful" datalayers available from MassGIS
- Examples of datalayers downloaded:
 - Town and county boundary data
 - Massachusetts roads
 - Elevation contours
 - 2000 U.S. Census
 - Orthophoto images

<u>Data Analysis Plan</u>

Statistical analyses:

- Interobserver reliability: Pearson correlation coefficients; Cohen's kappa coefficient and/or Spearman's rank correlation
- Intrasite variability: statistical techniques described by Raudenbush & Sampson*

GIS analyses:

- Path structure (connectivity, path density)
- Analysis of recreational area accessibility

*Raudenbush SW, Sampson RJ. Ecometrics: Toward a science of assessing ecological settings, with application to the Systematic Social Observation of Neighborhoods. Sociological Methodology. 1999;29:1-41.

<u>Remaining Workplan Priorities</u>

- Finish pretesting PEAT & prepare tool for actual observations
- Complete processing of GPS data & downloading of GIS data layers
- Conduct PEAT observations at 6 sites & assess reliability
- Integrate PEAT data into GIS database
- Create derived variables both for trail characteristics & neighborhood contextual measures
- Develop manuscripts for publication

So What?..... What are the Potential Contributions?

- Created a reliable trail/path audit tool (PEAT)
- Produced a comprehensive set of objective (GIS) measures of trail and neighborhood characteristics that can be used in PA/trail use determinants studies
- Developed a valid and reproducible approach to GIS database design for outdoor trails/paths

<u>Acknowledgments</u>

- F. Tyler Huffman, University of Connecticut, for assisting with GPS data collection.
- Consultants Ross Brownson, Aldo Gherin, Jim Purdy, and Deneen Crosby

and.....

 Support for Phil Troped from the Centers for Disease Control & Prevention

Thank You!